• Title/Summary/Keyword: reinforced masonry

Search Result 187, Processing Time 0.022 seconds

A Study on the Roof Landscape Characteristics of Rural Villages - Focused on Road-Side Rural Villages - (농촌마을 지붕경관 특성에 관한 조사 연구 - 가로변 농촌마을을 대상으로 -)

  • Kim, Yun-Hag
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.15 no.3
    • /
    • pp.17-24
    • /
    • 2013
  • This study examined and investigated architectural characteristics such as the use of buildings, the number of layers, and structure, and roof landscape characteristics such as roof types, materials, and color in rural villages which were located on the street on the assumption that the landscape of rural villages should be managed by considering visual aspects. The results were as follows. The commonest frequency was found in 'residence'(2/3) for the use of buildings and 'masonry structure'(2/3) for the structure. 'Wood structure' and 'light gauge steel structure(prefabricated structure)' were also commonly found. The results suggest that although many rural houses have partially improved by agricultural and fishery development projects and garden suburbs has been increased by city residents' desire for rural life, there have been still many old houses. Frequently used roof types were a gambrel roof and a hipped roof. Roof materials were mixed in several materials such as tiles, slate, panels, color steel plate, reinforced concrete, and asphalt shingles. Roof color was also mixed in several colors such as reddish N7 and N0.5 of Neutral color, 10R3/6 and 10R3/10 of R color, 7.5B4/10 and 7.5B7/8 of B color and 5G8/6 of G color. The result suggests that roof color impedes the landscape of rural villages on the street. Based on the results, some roofs of rural villages were improved by the support of the government or the local governments but there are still many old roofs. The mixture of improved roofs and old roofs mainly contributed to impeding the landscape of rural villages and it was probably caused by the lack of systematic landscape plans by individual improvement of buildings. Therefore, it is necessary to devise systematic landscape plans in consideration of local identity and neighboring environment. In particular, the guideline for roof color influencing a street landscape should be established.

A Study on the Adaptive Reuse Techniques through the History of Buildings in the Historic Urban Area - Focused on the Deep and Narrow Lots of Nammun-ro 2Ga, Cheongju - (역사적 도심 내 건축물의 이력을 통해 본 재생기법에 관한 연구 -청주시 남문로 2가동의 세장형 필지를 대상으로-)

  • Kim, Tai-Young
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.22 no.2
    • /
    • pp.1-8
    • /
    • 2020
  • This study is intended to derive the adaptive reuse techniques through the history and aspects of new construction, extension, repair, and other works, limited to the deep and narrow lots facing Seongan-gil and Nammun-gil in Nammun-ro 2 ga of Cheongju, the historic urban area. The results are as follows. 1) In the case of newly built reinforced concrete buildings, the central part of the top floor of the residence or all floors are opened to the open space(void) to facilitate lighting and ventilation. This is developed as a convection phenomenon due to the temperature difference from the slits between buildings, which affects the entire air flow of the block. 2) The buildings of extension and repair are composed of two-story masonry or steel frame, both the front store facing the road and the house on the back, but it looks like one because it is in contact with each other. If only a small gap between the front and rear buildings is restored to an external space or a space equipped with sun light, a small breath can be provided in lighting and ventilation. 3) The existing two-story wooden stores and houses have lost their external space due to repairs. With minimal intervention to restore the small courtyard, slits, and space under the eaves, it will not only improve lighting and ventilation, but also create a unique appearance as a segment of the elongated store.

The Flexural Behavior of a Circular Concrete Filled Carbon Tube Columns under the Constant Axial Force with Reversed Cyclic Lateral Load (축하중과 반복 횡하중을 받는 콘크리트 충진 원형 탄소섬유 튜브 기둥의 휨거동특성)

  • Hong, Won-Kee;Kim, Hee-Cheul;Chung, Jin-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.13-22
    • /
    • 2004
  • The purpose of this study is to investigate the flexural behavior of circular concrete filled carbon tube(CFCT) columns subjected to constant axial load with the cyclic lateral load. Six numbers of composite columns were tested. Two parameters, winding angle and thickness of tube, were chosen to evaluate the flexural capacity and behavior of CFCT columns. Selected two parameters were considered simultaneously in order to evaluate the flexural behavior of CFCT columns more precisely. Flexural strength, deformation capacity, ductility and energy dissipation capacity of CFCT columns were evaluated by calculating the area of load-displacement envelop curves and load-displacement hysteresis curves obtained from experiment. Also, the ductile capacity obtained from experiment were compared to that of reinforced masonry wall for the comparison of existing structural element.

Types and Distribution Characteristics of Old Buildings in Historic Urban Area of Cheongju, Korea - Focused on Seongan-dong and Jungang-dong - (역사적 도심 내 현존하는 옛 건축물의 유형 및 분포 특성 - 청주시 성안동과 중앙동을 대상으로 -)

  • Kim, Tai Young
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.24 no.4
    • /
    • pp.59-66
    • /
    • 2022
  • This study is to investigate the old buildings that have been built more than 50 years ago, targeting the areas of Seongan and Jungang-dong, the historic urban area of Cheongju. Their types and distribution characteristics are as follows. 1) First, the old buildings existing in downtown Cheongju account for 21.4% of 1,070 out of the total 5,000 buildings. Among them, wooden buildings before the 1950s accounted for 60% of them, resulting in severe aging. 2) Second, by use, 728 detached houses and 276 neighborhood living facilities account for 93.8% of the total, with 16 offices and 12 religious facilities. By structure, there are wood 65%, masonry 30%, and reinforced concrete 5% (54 buildings). By number of floors, the first floor 90%, the second floor 7.3%, and the third floor or higher 2.7% (30 buildings). The roof material is 51.6% of earthenware, followed by slate, cement, and slab. 3) Third, the old buildings are scattered all over the streets, and are concentrated in Namju-dong, Nammun-ro 1-ga-dong, Seoun-dong, and Sudong at the foot of Uamsan Mountain, a former refugee village. Also old buildings are distributed in Seoun-dong and Seokgyo-dong where hanok(korean traditional houses) are concentrated, in Namju and Nammunro 1 ga-dong blocks connected by alleys, and in cul-de-sac all over the place.

Development of Analytical Model to Predict the Inelastic Moment Capacity of Reinforced Concrete and Masonry Shear Wall (전단벽 구조물의 모멘트 저항능력에 관한 비탄성 해석모델개발)

  • 홍원기;이호범;변근주
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.4
    • /
    • pp.123-134
    • /
    • 1993
  • A rapid progress has been made over last decade in the state-of-the-art earthquake structura1 engineering towards a better understanding of both the earthqauke ground motion and structural response. These efforts seek to ensure that there will be no serious injury or loss of life in the event of earthquake, and that structures can be built at minimum cost. The design of structures in general, concrete structures in particular, to resist strong ground input motions is not a simple matter, and analytical models for such structures must be developed from a design perspective that accounts for the complexities of the structural responses. The primary obj ective of earthquake structural engineering research is to ensure the safety of structures by understanding and improving a design methodology. Ideally, this would require the development of an analytical model related to a design methodology that ensures a ductile performance. For the accurate assessment of the adequacy of analytically developed model, experiments conducted to study the inplane inelastic cyclic behavior of structures should verify the analytical approach. The fundamental goal of this paper is to present and demonstrate experimentally verified analytical methods that provide the adequate degree of safety and confidience in the behavior of reinforced concrete structural components. This study further attempts to extend the developed modeling techruque for use by practicing structural engineers for both the analysis and design.Plication of the relaxed diaphragm through left thoracotomy was done and result was excellent as seen on Fig. 5. Cause of eventration of the left hemidiaphragm was due to paralysis of the left phrenic nerve which was tested during thoracotomy.

A study on development of disaster-risk assessment criteria for steep slope -Based on the cases of NDMS in Ministry of Interior and Safety- (급경사지 재해위험도 평가 기준 개선 방안 연구 -행정안전부 급경사지 관리시스템 사례를 중심으로-)

  • Suk, Jae-Wook;Kang, Hyo-Sub;Jeong, Hyang-Seon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.372-381
    • /
    • 2019
  • In this study, the National Disaster Management System (NDMS) was analyzed to evaluate the disaster impact assessment standards for steep slopes. Problems in the assessment methods and systems were discovered, which could be reasons for poor reliability. The disaster-risk evaluation index needs improvement to evaluate various types of retaining walls, such as concrete/reinforced soil walls and reinforcing stone masonry. Additionally, using the same score for overturning, bulging, and efflorescence could be reasons for poor reliability, and different weighting factors are needed. Assessment methods are needed to subdivide the social influence evaluation index while considering environmental conditions of steep slopes, such as railroads and reservoirs. For the evaluation of steep slopes, standards for start and end points of steep slopes should be created for effective management, and disaster impact assessment needs to be performed after redevelopment from an advanced index for protection and reinforcement. These problems were derived from a current evaluation system, so a disaster impact assessment is necessary to supplement the results of this study.

Structural Analysis of Concrete-filled FRP Tube Dowel Bar for Jointed Concrete Pavements (콘크리트 포장에서 FRP 튜브 다웰바의 역학적 특성 분석)

  • Park, Jun-Young;Lee, Jae-Hoon;Sohn, Dueck-Su
    • International Journal of Highway Engineering
    • /
    • v.13 no.3
    • /
    • pp.21-30
    • /
    • 2011
  • As well known, dowel bars are used to transfer traffic load acting on one edge to another edge of concrete slab in concrete pavement system. The dowel bars widely used in South Korea are round shape steel bar and they shows satisfactory performance under bending stress which is developed by repetitive traffic loading and environment loading. However, they are not invulnerable to erosion that may be caused by moisture from masonry joint or bottom of the pavement system. Especially, the erosion could rapidly progress with saline to prevent frost of snow in winter time. The problem under this circumstance is that the erosion not only drops strength of the steel dower bar but also comes with volume expansion of the steel dowel bar which can reduce load transferring efficiency of the steel dowel bar. To avoid this erosion problem in reasonable expenses, dowers bars with various materials are being developed. Fiber reinforced plastic(FRP) dower that is presented in this paper is suggested as an alternative of the steel dowel bar and it shows competitive resistance against erosion and tensile stress. The FRP dowel bar is developed in tube shape and is filled with high strength no shrinkage. Several slab thickness designs with the FRP dowel bars are performed by evaluating bearing stress between the dowel bar and concrete slab. To calculated the bearing stresses, theoretical formulation and finite element method(FEM) are utilized with material properties measured from laboratory tests. The results show that both FRP tube dowel bars with diameters of 32mm and 40mm satisfy bearing stress requirement for dowel bars. Also, with consideration that lean concrete is typical material to support concrete slab in South Korea, which means low load transfer efficiency and, therefore, low bearing stress, the FRP tube dowel bar can be used as a replacement of round shape steel bar.