• 제목/요약/키워드: reinforced concrete structural analysis

검색결과 1,296건 처리시간 0.028초

Post-peak behavior and flexural ductility of doubly reinforced normal- and high-strength concrete beams

  • Pam, H.J.;Kwan, A.K.H.;Ho, J.C.M.
    • Structural Engineering and Mechanics
    • /
    • 제12권5호
    • /
    • pp.459-474
    • /
    • 2001
  • The complete moment-curvature curves of doubly reinforced concrete beams made of normal- or high-strength concrete have been evaluated using a newly developed analytical method that takes into account the stress-path dependence of the constitutive properties of the materials. From the moment-curvature curves and the strain distribution results obtained, the post-peak behavior and flexural ductility of doubly reinforced normal- and high-strength concrete beam sections are studied. It is found that the major factors affecting the flexural ductility of reinforced concrete beam sections are the tension steel ratio, compression steel ratio and concrete grade. Generally, the flexural ductility decreases as the amount of tension reinforcement increases, but increases as the amount of compression reinforcement increases. However, the effect of the concrete grade on flexural ductility is fairly complicated, as will be explained in the paper. Quantitative analysis of such effects has been carried out and a formula for direct evaluation of the flexural ductility of doubly reinforced concrete sections developed. The formula should be useful for the ductility design of doubly reinforced normal- and high-strength concrete beams.

Reinforced concrete core-walls connected by a bridge with buckling restrained braces subjected to seismic loads

  • Beiraghi, Hamid
    • Earthquakes and Structures
    • /
    • 제15권2호
    • /
    • pp.203-214
    • /
    • 2018
  • Deflection control in tall buildings is a challenging issue. Connecting of the towers is an interesting idea for architects as well as structural engineers. In this paper, two reinforced concrete core-wall towers are connected by a truss bridge with buckling restrained braces. The buildings are 40 and 60-story. The effect of the location of the bridge is investigated. Response spectrum analysis of the linear models is used to obtain the design demands and the systems are designed according to the reliable codes. Then, nonlinear time history analysis at maximum considered earthquake is performed to assess the seismic responses of the systems subjected to far-field and near-field record sets. Fiber elements are used for the reinforced concrete walls. On average, the inter-story drift ratio demand will be minimized when the bridge is approximately located at a height equal to 0.825 times the total height of the building. Besides, because of whipping effects, maximum roof acceleration demand is approximately two times the peak ground acceleration. Plasticity extends near the base and also in major areas of the walls subjected to the seismic loads.

Assessment of reliability-based FRP reinforcement ratio for concrete structures with recycled coarse aggregate

  • Ju, Minkwan;Park, Kyoungsoo;Lee, Kihong;Ahn, Ki Yong;Sim, Jongsung
    • Structural Engineering and Mechanics
    • /
    • 제69권4호
    • /
    • pp.399-405
    • /
    • 2019
  • The present study assessed the reliability-based reinforcement ratio of FRP reinforced concrete structure applying recycled coarse aggregate (RCA) concrete. The statistical characteristics of FRP bars and RCA concrete were investigated from the previous literatures and the mean value and standard deviation were employed for the reliability analysis. The statistics can be regarded as the material uncertainty for configuring the probability distribution model. The target bridge structure is the railway bridge with double T-beam section. The replacement ratios of RCA were 0%, 30%, 50%, and 100%. From the probability distribution analysis, the reliability-based reinforcement ratios of FRP bars were assessed with four cases according to the replacement ratio of RCA. The reinforcement ratio of FRP bars at RCA 100% showed about 17.3% higher than the RCA 0%, where the compressive strength at RCA 100% decreased up to 27.5% than RCA 0%. It was found that the decreased effect of the compressive strength of RCA concrete could be compensated with increase of the reinforcement ratio of FRP bars. This relationship obtained by the reliability analysis can be utilized as a useful information in structural design for FRP bar reinforced concrete structures applying RCA concrete.

Reliability-based assessment of damaged concrete buildings

  • Sakka, Zafer I.;Assakkaf, Ibrahim A.;Qazweeni, Jamal S.
    • Structural Engineering and Mechanics
    • /
    • 제65권6호
    • /
    • pp.751-760
    • /
    • 2018
  • Damages in concrete structures due to aging and other factors could be a serious and immense matter. Making the best selection of the most viable and practical repairing and strengthening techniques are relatively difficult tasks using traditional methods of structural analyses. This is due to the fact that the traditional methods used for assessing aging structure are not fully capable when considering the randomness in strength, loads and cost. This paper presents a reliability-based methodology for assessing reinforced concrete members. The methodology of this study is based on probabilistic analysis, using statistics of the random variables in the performance function equations. Principles of reliability updating are used in the assessment process, as new information is taken into account and combined with prior probabilistic models. The methodology can result in a reliability index ${\beta}$ that can be used to assess the structural component by comparing its value with a standard value. In addition, these methods result in partial safety factor values that can be used for the purpose of strengthening the R/C elements of the existing structure. Calculations and computations of the reliability indices and the partial safety factors values are conducted using the First-order Reliability Method and Monte Carlo simulation.

Structural Steel as Boundary Elements in Ductile Concrete Walls

  • Cho, Soon-Ho
    • KCI Concrete Journal
    • /
    • 제12권2호
    • /
    • pp.73-84
    • /
    • 2000
  • A new form of construction utilizing structural steel as the boundary elements in ductile flexural concrete walls is proposed to solve the bar congestion problems in such a heavily reinforced region, while maintaining the ductility and energy absorption capacity comparable to their traditional form. Two wall specimens containing rectangular hollow structural sections (HSS) and channels at their ends respectively, and one companion standard reinforced concrete wall specimen with concentrated end reinforcement were constructed and tested under reversed cyclic loading to evaluate the construction process as well as the structural performance. Initially, all three specimens were chosen and detailed with some caution to have approximately the same flexural capacity without change of the original shape and dimension of a rectangular cross section correction. Analysis and comparison of test results indicated that the reversed cyclic responses of three walls showed similar hysteretic properties, but in those with steel boundaries, local buckling of the corresponding steel webs and flanges following significant yielding was a dominant factor to determine the hysteretic response. The monotonic and cyclic responses predicted based on a sectional approach was also presented and found to be in good agreement with measured results. Design recommendations considering local instability of the structural steel elements and the interaction between steel chords and a concrete web member in such a composite wall are presented.

  • PDF

Exact buckling load of a restrained RC column

  • Krauberger, Nana;Saje, Miran;Planinc, Igor;Bratina, Sebastjan
    • Structural Engineering and Mechanics
    • /
    • 제27권3호
    • /
    • pp.293-310
    • /
    • 2007
  • Theoretical foundation for the buckling load determination in reinforced concrete columns is described and analytical solutions for buckling loads of the Euler-type straight reinforced concrete columns given. The buckling analysis of the limited set of restrained reinforced concrete columns is also included, and some conclusions regarding effects of material non-linearity and restrain stiffnesses on the buckling loads and the buckling lengths are presented. It is shown that the material non-linearity has a substantial effect on the buckling load of the restrained reinforced concrete columns. By contrast, the steel/concrete area ratio and the layout of reinforcing bars are less important. The influence on the effective buckling length is small.

3차원 비대칭 철근콘크리트 구조물의 비선형 지진응답해석 (Nonlinear Seismic Analysis of a Three-dimensional Unsymmetrical Reinforced Concrete Structure)

  • 임현규;이영근;강준원;지호석;조호현;김문수
    • 한국전산구조공학회논문집
    • /
    • 제27권5호
    • /
    • pp.429-436
    • /
    • 2014
  • 본 논문은 철근콘크리트 구조물의 지진해석에 관한 국제 벤치마크 프로젝트인 SMART-2013을 통해 3차원 비대칭 철근콘크리트 건물의 고유진동수와 재료 비선형성을 고려한 지진응답을 계산한 결과를 제시한다. 이를 위해 콘크리트와 철근의 비선형 재료모델을 구성하고 대표부피요소에 대한 국부테스트를 수행하여 비선형 모델의 성능을 평가하였다. 이러한 SMART-2013 철근콘크리트 건물의 비선형 유한요소모델에 대해 모드해석과 저강도 지진하중에 대한 선형 시간이력해석을 수행한 결과, 구조물의 고유진동수, 변위 및 가속도 시간이력이 SMART-2013 프로젝트에서 제시한 실험값들과 유사하였다. 또한 Northridge 지진에 대한 변위 및 가속도 응답의 시간이력과 최대층간상대변위의 응답스펙트럼을 계산하여 고강도 지진하중에 대한 이 철근콘크리트 건물의 거동을 평가하였다.

Layered finite element method in cracking and failure analysis of RC beams and beam-column-slab connections

  • Guan, Hong;Loo, Yew-Chaye
    • Structural Engineering and Mechanics
    • /
    • 제5권5호
    • /
    • pp.645-662
    • /
    • 1997
  • A nonlinear semi-three-dimensional layered finite element procedure is developed for cracking and failure analysis of reinforced concrete beams and the spandrel beam-column-slab connections of flat plates. The layered element approach takes the elasto-plastic failure behaviour and geometric nonlinearity into consideration. A strain-hardening plasticity concrete model and a smeared steel model are incorporated into the layered element formulation. Further, shear failure, transverse reinforcement, spandrel beams and columns are successfully modelled. The proposed method incorporating the nonlinear constitutive models for concrete and steel is implemented in a finite element program. Test specimens including a series of reinforced concrete beams and beam-column-slab connections of flat plates are analysed. Results confirm the effectiveness and accuracy of the layered procedure in predicting both flexural and shear cracking up to failure.

Strength of FRP RC sections after long-term loading

  • Pisani, M.A.
    • Structural Engineering and Mechanics
    • /
    • 제15권3호
    • /
    • pp.345-365
    • /
    • 2003
  • The adoption of fibre reinforced polymer (FRP) rebars (whose behaviour is elastic-brittle) in reinforced concrete (RC) cross sections requires the assessment of the influence of time-dependent behaviour of concrete on the load-carrying capacity of these sections. This paper presents a method of computing the load-carrying capacity of sections that are at first submitted to a constant long-term service load and then overloaded up to ultimate load. The method solves first a non-linear visco-elastic problem, and then a non-linear instantaneous analysis up to ultimate load that takes into account the self-equilibrated stress distribution previously computed. This method is then adopted to perform a parametric analysis that shows that creep and shrinkage of concrete increase the load-carrying capacity of the cross section reinforced with FRP and allows for the suggestion of simple design rules.

재령보정유효탄성계수법에 의한 합성기둥 축소량 해석 (Column Shortening Analysis of Composite Columns by Age-adjusted Effective Modulus Method)

  • 김한수;김재건;김도균
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.490-495
    • /
    • 2006
  • The analysis method proposed by PCA is widely used in calculating the column shortening of reinforced and composite columns of a tall building. However, residual creep factor which relates creep strain of reinforced concrete to creep strain of plain concrete is based on Rate of Creep Method (RCM) which has theoretical defects and is considered obsolete. In this paper, a new equation for the residual creep factor based on Age-adjusted Effective Modulus Method (AEMM) which is considered exact and better than RCM is proposed. The residual creep factor by RCM is found to be higher than one by AEMM, which means current PCA method overestimates the shortening of a reinforced concrete column. By using the residual creep factor by AEMM, more exact column shortening of a tall building can be obtainable with a simple modification to PCA method.

  • PDF