• 제목/요약/키워드: reinforced concrete members

검색결과 876건 처리시간 0.031초

Finite element modeling of reinforced concrete beams externally bonded with PET-FRP laminates

  • Rami A. Hawileh;Maha A. Assad;Jamal A. Abdalla; M. Z. Naser
    • Computers and Concrete
    • /
    • 제33권2호
    • /
    • pp.163-173
    • /
    • 2024
  • Fiber-reinforced polymers (FRP) have a proven strength enhancement capability when installed into Reinforced Concrete (RC) beams. The brittle failure of traditional FRP strengthening systems has attracted researchers to develop novel materials with improved strength and ductility properties. One such material is that known as polyethylene terephthalate (PET). This study presents a numerical investigation of the flexural behavior of reinforced concrete beams externally strengthened with PET-FRP systems. This material is distinguished by its large rupture strain, leading to an improvement in the ductility of the strengthened structural members compared to conventional FRPs. A three-dimensional (3-D) finite element (FE) model is developed in this study to predict the load-deflection response of a series of experimentally tested beams published in the literature. The numerical model incorporates constitutive material laws and bond-slip behavior between concrete and the strengthening system. Moreover, the validated model was applied in a parametric study to inspect the effect of concrete compressive strength, PET-FRP sheet length, and reinforcing steel bar diameter on the overall performance of concrete beams externally strengthened with PET-FRP.

On the Ductility of High-Strength Concrete Beams

  • Jang, Il-Young;Park, Hoon-Gyu;Kim, Sung-Soo;Kim, Jong-Hoe;Kim, Yong-Gon
    • International Journal of Concrete Structures and Materials
    • /
    • 제2권2호
    • /
    • pp.115-122
    • /
    • 2008
  • Ductility is important in the design of reinforced concrete structures. In seismic design of reinforced concrete members, it is necessary to allow for relatively large ductility so that the seismic energy is absorbed to avoid shear failure or significant degradation of strength even after yielding of reinforcing steels in the concrete member occurs. Therefore, prediction of the ductility should be as accurate as possible. The principal aim of this paper is to present the basic data for the ductility evaluation of reinforced high-strength concrete beams. Accordingly, 23 flexural tests were conducted on full-scale structural concrete beam specimens having concrete compressive strength of 40, 60, and 70MPa. The test results were then reviewed in terms of flexural capacity and ductility. The effect of concrete compressive strength, web reinforcement ratio, tension steel ratio, and shear span to beam depth ratio on ductility were investigated experimentally.

FRP bar를 주근으로 사용한 콘크리트 휨부재의 압축측 콘크리트 구속에 따른 거동 (Behavior According to Confinement of Compressive Concrete on Flexural Members Reinforced with FRP Bars)

  • 서대원;한범석;신성우
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제12권3호
    • /
    • pp.110-118
    • /
    • 2008
  • FRP bar는 높은 인장강도와 경량의 재료로 철근부식문제를 해결할 수 있는 대안으로 대두되고 있다. 그러나 FRP와 콘크리트 모두 취성적인 재료로 철근콘크리트보다 낮은 연성을 갖게 되며, 갑작스러운 파괴를 유발할 수 있다. 따라서 본 연구에서는 FRP 보강근을 사용한 휨부재의 압축측을 나선형 보강근으로 구속하여 거동을 개선하고자 하였으며, 구조실험을 통하여 파괴모드의 개선 및 연성증가를 확인할 수 있었다.

LIFE-SPAN SIMULATION AND DESIGN APPROACH FOR REINFORCED CONCRETE STRUCTURES

  • An, Xuehui;Maekawa, Koichi;Ishida, Tetsuya
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.3-17
    • /
    • 2007
  • This paper provides an introduction to life-span simulation and numerical approach to support the performance design processes of reinforced concrete structures. An integrated computational system is proposed for life-span simulation of reinforced concrete. Conservation of moisture, carbon dioxide, oxygen, chloride, calcium and momentum is solved with hydration, carbonation, corrosion, ion dissolution. damage evolution and their thermodynamic/mechanical equilibrium. Coupled analysis of mass transport and damage mechanics associated with steel corrosion is presented for structural performance assessment of reinforced concrete. Multi-scale modeling of micro-pore formation and transport phenomena of moisture and ions are mutually linked for predicting the corrosion of reinforcement and volumetric changes. The interaction of crack propagation with corroded gel migration can also be simulated. Two finite element codes. multi-chemo physical simulation code (DuCOM) and nonlinear dynamic code of structural reinforced concrete (COM3) were combined together to form the integrated simulation system. This computational system was verified by the laboratory scale and large scale experiments of damaged reinforced concrete members under static loads, and has been applied to safety and serviceability assessment of existing structures. Based on the damage details predicted by the nonlinear finite element analytical system, the life-span-cost of RC structures including the original construction costs and the repairing costs for possible damage during the service life can be evaluated for design purpose.

  • PDF

전단지배형 부재의 변형능력 산정을 위한 모형 (Deformability Models of Shear Controlled Members)

  • 홍성걸
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.357-360
    • /
    • 2004
  • Estimation of deformation capacity of non-flexural reinforced concrete members is proposed using basic concepts of limit analysis and the virtual work method. This new approach starts with construction of admissible stress field as for an equilibrium set. Failure mechanisms compatible with admissible stress fields are postulated as for displacement set. It is assumed that the ultimate deformations as result of failure mechanisms are controlled by ultimate strain of concrete in compression. The derived formula for deformability of deep beams in shear shows reasonable range of ultimate displacement.

  • PDF

Theoretical and experimental serviceability performance of SCCs connections

  • Maghsoudi, Ali Akbar
    • Structural Engineering and Mechanics
    • /
    • 제39권2호
    • /
    • pp.241-266
    • /
    • 2011
  • The Self Compacting Concrete, SCC is the new generation type of concrete which is not needed to be compacted by vibrator and it will be compacted by its own weight. Since SCC is a new innovation and also the high strength self compacting concrete, HSSCC behavior is like a brittle material, therefore, understanding the strength effect on the serviceability performance of reinforced self compacting concretes is critical. For this aim, first the normal and high strength self compacting concrete, NSSCC and HSSCC was designed. Then, the serviceability performance of reinforced connections consisting of NSSCC and HSSCC were investigated. Twelve reinforced concrete connections (L = 3 m, b = 0.15 m, h = 0.3 m) were simulated, by this concretes, the maximum and minimum reinforcement ratios ${\rho}$ and ${\rho}^{\prime}$ (percentage of tensile and compressive steel reinforcement) are in accordance with the provision of the ACI-05 for conventional RC structures. This study was limited to the case of bending without axial load, utilizing simple connections loaded at mid span through a stub (b = 0.15 m, h = 0.3 m, L = 0.3 m) to simulate a beam-column connection. During the test, concrete and steel strains, deflections and crack widths were measured at different locations along each member. Based on the experimental readings and observations, the cracked moment of inertia ($I_{cr}$) of members was determined and the results were compared with some selective theoretical methods. Also, the flexural crack widths of the members were measured and the applicability for conventional vibrated concrete, as for ACI, BS and CSA code, was verified for SCCs members tested. A comparison between two Codes (ACI and CSA) for the theoretical values cracking moment is indicate that, irrespective of the concrete strength, for the specimens reported, the prediction values of two codes are almost equale. The experimental cracked moment of inertia $(I_{cr})_{\exp}$ is lower than its theoretical $(I_{cr})_{th}$ values, and therefore theoretically it is overestimated. Also, a general conclusion is that, by increasing the percentage of ${\rho}$, the value of $I_{cr}$ is increased.

초음파 속도법을 이용한 콘크리트 구조물의 균열깊이 측정 (Crack Depth Evaluation of Concrete Structures using Ultrasonic Pulse Velocity method)

  • 오병환;김광수;김세훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.659-662
    • /
    • 1999
  • Ultrasonic pulse velocity method is employed for evaluation of crack depth in concrete structures. Due to the heterogeneous nature of concrete and the indirect transmission arrangement for the transit time measurement through the surface-opening cracks in concrete structures, ultrasonic pulse velocity has so many variations as crack depths and transmission lengths vary. In this study, ultrasonic pulse velocity method is investigated to evaluate the surface-opening crack depth of concrete slabs, reinforced concrete slabs, reinforced concrete flexural members. the resent study gives a modified method for deminishing errors in transit time measurements and show limitations to the evaluation of crack depth in reinforced concrete structures.

  • PDF

주기하중을 받는 철근 콘크리트 소성 모델 (Plasticity Model of RC under Cyclic Load)

  • 박홍근;강수민;신영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.451-454
    • /
    • 1999
  • An existing plasticity model using multiple failure criteria is modified to describe the behavior of reinforced concrete planar members under cyclic load. Multiple failure criteria are used to define both isotropic damage of compressive crushing and anisotropic damage of tensile cracking. A numerical method is developed to define multi-directional and non-orthogonal crack directions. The material model is implemented in the finite element analysis and verified by comparison with existing experiments of reinforced concrete shear wall.

  • PDF

철근콘크리트 구조물의 보수공법 연구(I) -보수재료 및 공법- (Studies on Repair of Reinforced Concrete Structures(I) -Repair Materials and Methods-)

  • 연규석;정영수;한만엽;이종열;장태연;정경현
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.212-218
    • /
    • 1995
  • This study experimentally evaluated the performance of damaged section which was repaired using polymer materials in reinforced flexural flexural members Six different materials, two types of polymer, two types of polymer-cement and two types of cement, were used by means of injection method on prepacked concrete and spray mortar patching method. As results, the repair works could be done easily and surfaces of the repaired section were smooth.

  • PDF

연속섬유 거푸집으로 보강된 압축부재의 역학적 특성에 관한 연구 (A Study on the Mechanical Characteristics of Compression Member Confined the Cast Frame Using Continuous Fiber Mesh)

  • 고훈범
    • 한국건축시공학회지
    • /
    • 제2권4호
    • /
    • pp.99-104
    • /
    • 2002
  • Recently, the continuous fiber materials has become more important materials to repair and to reinforce concrete structural members. Continuous fiber meshes are effective for shear and confining reinforcement and provide excellent durability when combined with high strength mortar The purpose of this study is to verify the relationship between concrete strength and the ductility of inner concrete confined laterally by continuous fiber meshes. For this study, Experimental studies were conducted by compressive members using the cast frame of high strength mortar and continuous fiber meshes. Therefore, the result shows that compressive strength and ductility has improved according to the amount of the fiber meshes, and that the lateral confined effect of members with 3- or 4-axis mesh arrangement is bigger than that of members with 2-axis mesh. These data have to be used to verify the characteristic of concrete structure members reinforced continuous fiber mesh.