• Title/Summary/Keyword: reinforced concrete column and steel beam

Search Result 223, Processing Time 0.018 seconds

Proposal and Performance Verification of a Seismic Adapter for Steel Brace Connections for In-plane Reinforcement of School Buildings (학교 건축물의 면내보강을 위한 강재브레이스 접합용 내진어댑터의 상세 제안 및 성능검증)

  • Seokjae Heo;Lan Chung;In-Kwan Paik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.162-171
    • /
    • 2023
  • In this study, The details for a seismic adapter designed to easily connect concrete structures and reinforcement materials for the in-plane reinforcement of aged structures were proposed. Proposed seismic adapter was tested for performance using a dynamic simulation on a 2-story column-beam structure, scaled to half of the real size. The experimental results showed that the reinforced test specimens using the seismic adapter improved their energy dissipation capacity by 3.5 times compared to the non-reinforced specimens. It was confirmed that the seismic adapter experienced no damage within its general usage range, thus proving its effectiveness. Subsequently, upon loading until the limit of deformation (a deformation angle of 3.3%), it was observed that one of the M10 bolts connecting the adapter and the reinforcement at the lower part of the first floor broke. Considering this finding, when applying seismic retrofitting in real situations, emphasis should be placed on the design of the bolts and anchors connecting the seismic adapter. This aspect warrants further research for validation.

Pullout Test of Reinforcement with End Mechanical Anchoring Device (단부 기계적 정착장치를 갖는 철근의 뽑힘강도)

  • 김용곤;임원석;최동욱
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.430-439
    • /
    • 2002
  • The development of reinforcing steel is required in reinforced concrete structures. The standard hooks that have been widely used for the tensile development in the beam-column joints tend to create difficulties of construction such as steel congestion as the member cross sections are becoming smaller due to the use of higher strength concrete and higher grade steel. Using the reinforcing bars with end mechanical anchoring device (headed reinforcement) provides potential economies in construction such as reduction in development lengths, simplified details, and improved responses to cyclic loadings. In this paper, the pullout strengths and behaviors of the headed reinforcement were experimentally studied. In 33 pullout tests performed using D25 deformed reinforcing bars, the test parameters were embedment depth, edge distance, head size, and the use of transverse reinforcement. The pullout strengths determined from tests closely agreed with the pullout strengths predicted using the CCD method. The pullout strengths increased with increasing embedment depths nd edge distances. The strengths tend to increase with the use of larger heads. From the experimental program where the effect of the transverse reinforcement was examined, a modification factor to the CCD was suggested to represent the effect of such reinforcement that is installed across the concrete failure plane on the pullout strengths.

Behavior of 550MPa 43mm Hooked Bars Embedded in Beam-Column Joints (보-기둥 접합부에 정착된 550 MPa 43 mm 갈고리철근의 거동)

  • Bae, Min-Seo;Chun, Sung-chul;Kim, Mun-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.611-620
    • /
    • 2016
  • In the construction of nuclear power plants, only 420 MPa reinforcing bars are allowed and, therefore, so many large-diameter bars are placed, which results in steel congestion. Consequently, re-bar works are difficult and the quality of RC structures may be deteriorated. To solve the steel congestion, 550 MPa bars are necessary. Among many items for verifying structural performance of reinforced concrete with 550 MPa bars, the 43 mm hooked bars are examined in this study. All specimens failed by side-face blowout and the side cover explosively spalled at maximum loads. The bar force was initially transferred to the concrete primarily by bond along a straight portion. At the one third of maximum load, the bond reached a peak capacity and began to decline, while the hook bearing component rose rapidly. At failure, most load was resisted by the hook bearing. For confined specimens with hoops, the average value of test-to-prediction ratios by KCI code is 1.45. The modification factor of confining reinforcement which was not allowed for larger than 35 mm bars can be applied to 43 mm hooked bars. For specimens with 70 MPa concrete, the average value of test-to-prediction ratios by KCI code is 1.0 which is less than the values of the other specimens. The effects of concrete compressive strength should be reduced. An equation to predict anchorage capacity of hooked bars was developed from regression analysis including the effects of compressive strength of concrete, embedment length, side cover thickness, and transverse reinforcement index.