• Title/Summary/Keyword: reinforced concrete (RC) structure

검색결과 477건 처리시간 0.029초

Service-Life Prediction of Reinforced Concrete Structures under Corrosive Environment

  • Shimomura, Takumi
    • Corrosion Science and Technology
    • /
    • 제4권5호
    • /
    • pp.171-177
    • /
    • 2005
  • A comprehensive framework for numerical simulation of time-dependent performance change of reinforced concrete (RC) structures subjected to chloride attack is presented in this paper. The system is composed of simplified computational models for transport of moisture and chloride ions in concrete pore structure and crack, corrosion of reinforcement in concrete and mechanical behavior of RC member with reinforcement corrosion. Service-life of RC structures under various conditions is calculated.

Seismic performance evaluation of a three-dimensional unsymmetrical reinforced concrete building

  • Lim, Hyun-Kyu;Kang, Jun Won;Lee, Young-Geun;Chi, Ho-Seok
    • Multiscale and Multiphysics Mechanics
    • /
    • 제1권2호
    • /
    • pp.143-156
    • /
    • 2016
  • Reinforced concrete (RC) structures require advanced analysis techniques for better estimation of their seismic responses, especially in the case of exhibiting complex three-dimensional coupling of torsional and flexural behaviors. This study focuses on validating a numerical approach for evaluating the seismic response of a three-dimensional unsymmetrical RC structure through the participation in the SMART 2013 international benchmark program. The benchmark program provides material properties, detailed drawings of the RC structure, and input ground motions for the seismic response evaluation. In this study, nonlinear constitutive models of concrete and rebar were formed and local tests were conducted to verify the constitutive models in finite element analysis. Elastic calibration of the finite element model of the SMART 2013 RC structure was performed by comparing numerical and experimental results in modal and linear time history analyses. Using the calibrated model, nonlinear earthquake analysis and seismic fragility analysis were performed to estimate the behavior and vulnerability of the RC structure with various ground motions.

철근 콘크리트 구조와 강판 콘크리트 구조(Steel Plate Concrete) 이질접합부를 가진 보의 휨 하중 특성에 관한 실험연구 (An Experimental Study on Flexural Properties of SC(Steel Plate Concrete) Beam Structure with Reinforced Concrete Joint)

  • 이경진;함경원;박동수;김우범
    • 한국강구조학회 논문집
    • /
    • 제22권5호
    • /
    • pp.455-463
    • /
    • 2010
  • 본 연구는 철근콘크리트 구조와 강판 콘크리트 구조가 혼합되어 이질접합부가 있는 보형 구조물의 역학적 특성을 평가하기 위하여 수행하였다. 강판콘크리트 구조는 현재 국내와 일본, 미국 등에서 연구가 진행되고 있고, 대규모 산업설비에서 철근콘크리트 구조의 대안으로 실험연구가 수행되고 있다. 본 연구에서는 대규모 철근콘크리트 구조물에 강판 콘크리트 구조를 적용할 경우를 가정하여 보 형태의 구조물에 강판 콘크리트 구조와 철근 콘크리트 구조를 적용하여 이질접합부를 만들고, 면외하중을 파괴 시까지 가력하여 이질접합부를 가진 보형실험체의 휨 내력 및 구조특성을 평가하기 위하여 실험연구를 수행하였다.

시공하중의 영향을 받는 플랫플레이트의 장기처짐 (Long Term Deflection of Flat Plate Affected by Construction Load)

  • 강수민;이지웅;오재근;김욱종;이도범;박홍근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.149-152
    • /
    • 2006
  • Serviceability of reinforced concrete building is affected dominantly by long term deflection of slab. And in case of reinforced concrete building with flat plate slab, severe long term deflection was expected because it has no beams which have large flexural stiffness. Therefore it is important to calculate exactly long term deflection of RC flat plate structure to assure its serviceability. However, current codes couldn't calculate exactly long term deflection of RC flat plate structure because they don't consider effects of boundary condition and construction load. By the way, recently the method to calculate long term deflection of RC flat plate structure was proposed by considering these effects. In the present study, long term deflection of RC flat plate structure was analyzed by comparing this method with recent experimental results. In conclusion, long term deflection of RC flat plate structure was affected considerably by effects of boundary condition, construction load and tensile strength of concrete. And recently proposed method considers these effects reasonably but it should be modified to reflect creep effect of RC flat plate slab reasonably.

  • PDF

유공 PC 벽체의 내진 거동에 관한 연구 (Seismic Performance of Precast Concrete Bearing Walls with Hollow Core)

  • 이리형;한상환;조순금;남기룡;최근도
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.425-430
    • /
    • 1996
  • The purpose of this study is to investigate the behavior of the bearing precast concrete (pc) wall structure with hollow core based on experimental tests. In order to evaluate the cyclic performance of the pc walls. Too one story pc walls and ond one reinforced concrete wall are made. The experimental results of pc walls were compared with those values of reinforced concrete (rc) wall. The structural behaviors of pc wall structure with hollow core are similar to those of reinforced concrete bearing wall structure. This study shows that the pc wall with hollow core could be treated as rc wall when designs the pc wall structure against lateral loads

  • PDF

Seismic performances of steel reinforced concrete bridge piers

  • Deng, Jiangdong;Liu, Airong;Yu, Qicai;Peng, Guoxing
    • Steel and Composite Structures
    • /
    • 제21권3호
    • /
    • pp.661-677
    • /
    • 2016
  • The quasi static test of the steel reinforced concrete (SRC) bridge piers and rigid frame arch bridge structure with SRC piers was conducted in the laboratory, and the seismic performance of SRC piers was compared with that of reinforced concrete (RC) bridge piers. In the test, the failure process, the failure mechanism, hysteretic curves, skeleton curves, ductility coefficient, stiffness degradation curves and the energy dissipation curves were analyzed. According to the $M-{\Phi}$ relationship of fiber section, the three-wire type theoretical skeleton curve of the lateral force and the pier top displacement was proposed, and the theoretical skeleton curves are well consistent with the experimental curves. Based on the theoretical model, the effects of the concrete strength, axial compression ratio, slenderness ratio, reinforcement ratio, and the stiffness ratio of arch to pier on the skeleton curve were analyzed.

철근콘크리트 구조물의 내구성 설계수법에 관한 문헌적 연구 (Literature Study on the Durability Design Method of Reinforced Concrete Structure)

  • 신성우;이한승
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.421-426
    • /
    • 1999
  • The purpose of this study is to investigate the durability design method of reinforced concrete structure in order to establish a rationally combined design system of structural and durability design, that is to say performance-based design. In literature study, the integrated design of concrete structure studied JCI committe is very intensive durability design method for reinforced concrete structure. Specially, B root durability design method for selection of verification level is very effective method in the view of modeling of materials and structural properties to analyze safety and serviceability of RC structures.

  • PDF

Seismic rehabilitation of substandard RC columns with partially deteriorated concrete using CFRP composites

  • Hou, Dongxu;Wu, Zhimin;Zheng, Jianjun;Cui, Yao
    • Computers and Concrete
    • /
    • 제15권1호
    • /
    • pp.1-20
    • /
    • 2015
  • Many existing reinforced concrete (RC) columns in structures tend to become substandard RC ones due to updated standards or environmental changes. These substandard columns may alter the behaviors of the whole structure and therefore are in urgent need of seismic retrofitting. Owing to their superior advantages, carbon fiber reinforced polymer (CFRP) composites are widely used to retrofit RC columns. The applications mainly focus on various substandard RC columns, but few deals with substandard columns with deteriorated concrete, especially damaged by earthquake. The purpose of this paper is to investigate the seismic behaviors of CFRP reinforced partially deteriorated RC columns and to evaluate the effect of CFRP sheets on them. Six flexure-dominant columns were tested under a constant axial load and transverse cyclic displacements. It is found that the seismic behaviors of partially deteriorated columns can be recovered by wrapping CFRP sheets on them. Numerical analysis is then conducted using finite element methods and verified with experimental results. The effects of the axial load ratio, the ratio of the thickness of CFRP sheet to the column diameter, and the slenderness ratio on the seismic behaviors of CFRP reinforced RC columns are evaluated. Finally, a method is proposed to determine the required thickness of CFRP sheet.

Large-scale cyclic test on frame-supported-transfer-slab reinforced concrete structure retrofitted by sector lead rubber dampers

  • Xin Xu;Yun Zhou;Zhang Yan Chen;Da yang Wang;Ke Jiang;Song Wang
    • Earthquakes and Structures
    • /
    • 제26권5호
    • /
    • pp.383-400
    • /
    • 2024
  • For a conventionally repaired frame-supported-transfer-slab (FSTS) reinforced concrete (RC) structure, both the transfer slab and the beam-to-column and transfer slab-to-column joints remain vulnerable to secondary earthquakes. Aimed at improving the seismic performance of a damaged FSTS RC structure, an innovative retrofitting scheme is proposed, which adopts the sector lead rubber dampers (SLRDs) at joints after the damaged FSTS RC structure is repaired by conventional approaches. In this paper, a series of quasi-static cyclic tests was conducted on a large-scale retrofitted FSTS RC structure. The seismic performance was evaluated and the key test results, including deformation characteristics, damage pattern, hysteretic behaviour, bearing capacity and strains on key components, were reported in detail. The test results indicated that the SLRDs started to dissipate energy under the service level earthquake, and thus prevented damages on the beam-to-column and transfer slab-to-column joints during the secondary earthquakes and shifted the plastic hinges away from the beam ends. The retrofitting scheme of using SLRDs also achieved the seismic design concept of 'strong joint, weak component'. The FSTS RC structure retrofitted by the SLRDs could recover more than 85% bearing capacity of its undamaged counterpart. The hysteresis curves were featured by the inverse "S" shape, indicating good bearing capacity and hysteresis performance. The deformation capacity of the damaged FSTS RC structure retrofitted by the SLRDs met the corresponding codified requirements for the case of the maximum considered earthquake, as set out in the Chinese seismic design code. The stability of the FSTS RC structure retrofitted by the SLRDs, which was revealed by the developed stains of the RC frame and transfer slab, was improved compared with the undamaged FSTS RC structure.

섬유보강재를 이용한 RC 기둥의 보강 효과 (Strengthening Effects of RC Column using Fiber Reinforced Polymer)

  • 이현호;김진호;노광근
    • 콘크리트학회논문집
    • /
    • 제24권4호
    • /
    • pp.473-480
    • /
    • 2012
  • 아라미드 FRP로 보강된 RC 기둥의 전단보강효과를 평가하고자, 구조성능 실험을 수행하였다. 실험변수는 아라미드 시트 및 스트립 보강이며, 총 4개의 실험체를 대상으로 하였다. 실험 결과는 비보강 실험체를 기준으로 보강효과를 강도 및 에너지 능력 등을 평가하였다. 평가 결과 아라미드 시트보강이 강도증진과 아울러, 에너지 소산능력의 증진이라는 측면에서 매우 유효한 것으로 평가되었다.