• Title/Summary/Keyword: reinforced concrete (RC) columns

Search Result 438, Processing Time 0.023 seconds

Seismic response simulations of bridges considering shear-flexural interaction of columns

  • Zhang, Jian;Xu, Shi-Yu
    • Structural Engineering and Mechanics
    • /
    • v.31 no.5
    • /
    • pp.545-566
    • /
    • 2009
  • Bridge columns are subjected to combined actions of axial force, shear force and bending moment during earthquakes, caused by spatially-complex earthquake motions, features of structural configurations and the interaction between input and response characteristics. Combined actions can have significant effects on the force and deformation capacity of RC columns, resulting in unexpected large deformations and extensive damage that in turn influences the performance of bridges as vital components of transportation systems. This paper evaluates the seismic response of three prototype reinforced concrete bridges using comprehensive numerical models that are capable of simulating the complex soil-structural interaction effects and nonlinear behavior of columns. An analytical approach that can capture the shear-flexural interacting behavior is developed to model the realistic nonlinear behavior of RC columns, including the pinching behavior, strength deterioration and stiffness softening due to combined actions of shear force, axial force and bending moment. Seismic response analyses were conducted on the prototype bridges under suites of ground motions. Response quantities of bridges (e.g., drift, acceleration, section force and section moment etc.) are compared and evaluated to identify the effects of vertical motion, structural characteristics and the shear-flexural interaction on seismic demand of bridges.

Strength and Deformation Characteristics of Steel Fiber Reinforced Columns (강섬유 보강 기둥의 강도 및 변형 특성)

  • 장극관;이현호;양승호
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.49-57
    • /
    • 2002
  • As composite materials, the addition of steel fiber with concrete significant)y improves the engineering properties of structural members, notably shear strength and ductility. Flexural strength, fatigue strength, and the capacity to resist cracking are also enhanced. Especially the strengthening effect of steel fiber in shear is to prevent the brittle shear failure. In this study, shear-strengthening effect of steel fiber in RC short columns were investigated from the literature surveys and 10th specimem's member test results. From the test results, following conclusions can be made; the maximum enhancement of shear-strengthening effect can be achieved at about 1.5 % of steel fiber contents, shear strength and ductility capacity were improved remarkably in comparison to stiffness and energy dissipation capacity in steel fiber reinforced concrete.

Structural health monitoring of seismically vulnerable RC frames under lateral cyclic loading

  • Chalioris, Constantin E.;Voutetaki, Maristella E.;Liolios, Angelos A.
    • Earthquakes and Structures
    • /
    • v.19 no.1
    • /
    • pp.29-44
    • /
    • 2020
  • The effectiveness and the sensitivity of a Wireless impedance/Admittance Monitoring System (WiAMS) for the prompt damage diagnosis of two single-storey single-span Reinforced Concrete (RC) frames under cyclic loading is experimentally investigated. The geometrical and the reinforcement characteristics of the RC structural members of the frames represent typical old RC frame structure without consideration of seismic design criteria. The columns of the frames are vulnerable to shear failure under lateral load due to their low height-to-depth ratio and insufficient transverse reinforcement. The proposed Structural Health Monitoring (SHM) system comprises of specially manufactured autonomous portable devices that acquire the in-situ voltage frequency responses of a network of twenty piezoelectric transducers mounted to the RC frames. Measurements of external and internal small-sized piezoelectric patches are utilized for damage localization and assessment at various and increased damage levels as the magnitude of the imposed lateral cycle deformations increases. A bare RC frame and a strengthened one using a pair of steel crossed tension-ties (X-bracing) have been tested in order to check the sensitivity of the developed WiAMS in different structural conditions since crack propagation, damage locations and failure mode of the examined frames vary. Indeed, the imposed loading caused brittle shear failure to the column of the bare frame and the formation of plastic hinges at the beam ends of the X-braced frame. Test results highlighted the ability of the proposed SHM to identify incipient damages due to concrete cracking and steel yielding since promising early indication of the forthcoming critical failures before any visible sign has been obtained.

Effective flexural rigidities for RC beams and columns with steel fiber

  • Bengar, Habib Akbarzadeh;Kiadehi, Mohammad Asadi;Shayanfar, Javad;Nazari, Maryam
    • Steel and Composite Structures
    • /
    • v.34 no.3
    • /
    • pp.453-465
    • /
    • 2020
  • Influences of different variables that affect the effective flexural rigidity of reinforced concrete (RC) members are not considered in the most seismic codes. Furthermore, in the last decades, the application of steel fibers in concrete matrix designs has been increased, requiring development of an accurate analytical procedure to calculate the effective flexural rigidity of steel fiber reinforced concrete (SFRC) members. In this paper, first, a nonlinear analytical procedure is proposed to calculate the SFRC members' effective flexural rigidity. The proposed model's accuracy is confirmed by comparing the results obtained from nonlinear analysis with those recorded from the experimental testing. Then a parametric study is conducted to investigate the effects of different parameters such as varying axial load and steel fiber are then investigated through moment-curvature analysis of various SFRC (normal-strength concrete) sections. The obtained results show that increasing the steel fiber volume percentage increases the effective flexural rigidity. Also it's been indicated that the varying axial load affects the effective flexural rigidity. Lastly, proper equations are developed to estimate the effective flexural rigidity of SFRC members.

Modelling of reinforced concrete flat slab-column connections for system-scale seismic analyses of high-rise buildings

  • T.Y. Yang;O. AlHarras;L. Tobber;O. Sargazi
    • Computers and Concrete
    • /
    • v.31 no.1
    • /
    • pp.23-32
    • /
    • 2023
  • Reinforced concrete flat slab (RCFS) with columns is a standard gravity floor system for tall buildings in North America. Typically, RCFS-column connections are designed to resist gravity loads, and their contribution to resisting seismic forces is ignored. However, past experimental research has shown that RCFS-column connections have some strength and ductility, which may not be ignored. Advanced numerical models have been developed in the past to determine the nonlinear cyclic behavior of RCFS-column connections. However, these models are either too complicated for nonlinear dynamic analysis of an entire building or not developed to model the behavior of modern RCFS-column connections. This paper proposes a new nonlinear model suitable for modern RCFS-column connections. The numerical model is verified using experimental data of specimens with various material and reinforcement properties. A 40-story RC shear wall building was designed and analyzed to investigate the influence of RCFS on the global response of tall concrete buildings. The seismic responses of the building with and without the RCFS were modelled and compared. The results show that the modelling of RCFS has a significant impact on the inter-story drifts and force demands on both the seismic force-resisting and gravity elements.

Equivalent Column Stiffness Equations for Design of RC Slender Columns under Later Loads (횡하중을 받는 철근콘크리트 장주설계를 위한 기둥의 등가강성식)

  • 이재훈
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.1
    • /
    • pp.156-164
    • /
    • 1995
  • P-${\Delta}$ analysis by use of the equivalent colurnn stiffness determined by Momcnt curvature-Thrust curves provides relatively precise analytical results for unbraced reinforced concrete columns, however it needs a complicated arialytical procedure. Equ~valent col~rnn stiffness equations are proposed for a simple analytical procedure which are ckterrnined by the Moment-Curvature Thrust curves of the practically useable sections. Thc proposed stiffness equations are appiled to P-${\Delta}$ analysis and rnornent magnifier method to compare with the selected test result. Use of the proposed stiffness equations may slrnplify the P-${\Delta}$ i.rialvtica1 procedure and improve the accuracy of moment magnifier niethod.

Investigation of load transfer along interfaces of jacketed square columns

  • Achillopoulou, Dimitra V.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.3
    • /
    • pp.293-302
    • /
    • 2017
  • This study deals with a numerical investigation of load transfer along interfaces of jacketed columns using finite element models. Appropriate plasticity and constitutive models are used to simulate the response of concrete and steel bars. Experimental data were used to calibrate the simulation of mechanical characteristics. The different compressive strength of core and jacket concrete, the confinement ratio, the dowels' diameter size and the load pattern shapes were considered. The path diagrams along the interfaces elucidate the areas around the dowel bars where due to stress concentration plastic hinges and intense discontinuities are created. The stress flow also depicts the contribution of confinement of the jacketed area to the overall resonant load capacity of the core column. The scope of the research is to identify and quantify the shear transfer along the interfaces of strengthened elements.

An Experimental Comparison Study on the Strength and Earthquake-resistant Capacity of Reinforced Concrete Columns Retrofitted with Fiber-Steel Composite Plate (복합플레이트로 보강된 RC 기둥의 내진성능에 대한 연구)

  • Park Tae Man;Park Weon Su;Park Seong Min;Yoon Jeong Bae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.724-729
    • /
    • 2004
  • The purpose of this study is to investigate the strength and ductility improvement of columns retrofitted with Fiber-Steel Composite Plate, compared with Steel Plate, and Carbon Fiber Sheet. Test specimens strengthened with 3 different materials--- carbon fiber sheet, steel plate and fiber-steel composite plate --- were tested under cyclic lateral force and a constant axial load equal to $20\%$ of the column's axial load capacity. The hypothetical equivalent value of the strengthening among three materials is introduced to evaluate.

  • PDF

Evaluation on Cyclic Flexural Behavior of HSRC (Hybrid H-steel-reinforced Concrete) Beams Connected with Steel Columns (강재 기둥과 하이브리드 강재 보-RC 보 접합부의 반복 휨 거동 평가)

  • Kwon, Hyuck-Jin;Yang, Keun-Hyeok;Hong, Seung-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.291-298
    • /
    • 2017
  • The objective of the present study is to evaluate the cyclic flexural behavior of a hybrid H-steel-reinforced concrete (HSRC) beam at the connection with a H-steel column. The test parameter investigated was the configuration of dowel bars at the joint region of the HSRC beam. The HSRC beam was designed to have plastic hinge at the end of the H-steel beam rather than the RC beam section near the joint. All specimens showed a considerable ductile behavior without a sudden drop of th applied load, resulting in the displacement ductility ratio exceeding 4.6, although an unexpected premature welding failure occurred at the flanges of H-steel beams connecting to H-steel column. The crack propagation in the RC beam region, flexural strength, and ductility of HSRC beam system were insignificantly affected by the configuration of dowel bars. The flexural strength of HSRC beam system governed by the yielding of H-steel beam could be conservatively evaluated from the assumption of a perfect plasticity state along the section.

Analysis of RC beams subjected to shock loading using a modified fibre element formulation

  • Valipour, Hamid R.;Huynh, Luan;Foster, Stephen J.
    • Computers and Concrete
    • /
    • v.6 no.5
    • /
    • pp.377-390
    • /
    • 2009
  • In this paper an improved one-dimensional frame element for modelling of reinforced concrete beams and columns subjected to impact is presented. The model is developed in the framework of a flexibility fibre element formulation that ignores the shear effect at material level. However, a simple shear cap is introduced at section level to take account of possible shear failure. The effect of strain rate at the fibre level is taken into account by using the dynamic increase factor (DIF) concept for steel and concrete. The capability of the formulation for estimating the element response history is demonstrated by some numerical examples and it is shown that the developed 1D element has the potential to be used for dynamic analysis of large framed structures subjected to impact of air blast and rigid objects.