• 제목/요약/키워드: reinforced concrete (RC) columns

검색결과 446건 처리시간 0.026초

반복 횡하중이 작용하는 강재 클립형 연결장치로 결속된 철근 콘크리트 기둥의 비선형 유한요소해석 (Nonlinear Finite Element Analysis of Reinforced Concrete Columns with Steel Clip-Type Implements Subjected to Cyclic Lateral Loading)

  • 김용주;최병정
    • 한국전산구조공학회논문집
    • /
    • 제36권4호
    • /
    • pp.243-250
    • /
    • 2023
  • 횡하중에 작용하는 철근 콘크리트 기둥은 연성능력 확보를 위해 띠철근의 양 단부를 135° 구부려 시공하는 상세가 요구된다. 그러나 이러한 띠철근 상세는 시공이 매우 까다로와 실제 현장에서는 제대로 시공이 되지 않기도 한다. 이를 대체하기 위해 본 논문에서는 강재 클립형 연결장치가 적용된 철근 콘크리트 기둥에 대해 횡방향 반복가력 실험을 수행하고 그 구조적 성능을 평가하였다. 총 4개의 실험체가 제작되었으며 주요 실험변수는 강재 클립형 연결장치 및 고강도 콘크리트 사용 여부이다. 또한 대상 구조물에 대해 3차원 유한요소해석 모델을 개발하고 이에 대한 비선형 해석을 수행하였으며, 해석 및 실험결과를 비교하고 분석하였다. 그 결과 강재 클립형 연결장치가 설치된 콘크리트 기둥이 반복 횡하중에 대해 기존의 표준갈고리 상세를 지닌 콘크리트 기둥과 동등한 혹은 그 이상의 성능을 지니고 있으며, 개발된 유한요소해석 모델이 실험결과를 정확히 잘 예측하는 것으로 나타났다.

Compressive resistance behavior of UHPFRC encased steel composite stub column

  • Huang, Zhenyu;Huang, Xinxiong;Li, Weiwen;Zhang, Jiasheng
    • Steel and Composite Structures
    • /
    • 제37권2호
    • /
    • pp.211-227
    • /
    • 2020
  • To explore the feasibility of eliminating the longitudinal rebars and stirrups by using ultra-high-performance fiber reinforcement concrete (UHPFRC) in concrete encased steel composite stub column, compressive behavior of UHPFRC encased steel stub column has been experimentally investigated. Effect of concrete types (normal strength concrete, high strength concrete and UHPFRC), fiber fractions, and transverse reinforcement ratio on failure mode, ductility behavior and axial compressive resistance of composite columns have been quantified through axial compression tests. The experimental results show that concrete encased composite columns with NSC and HSC exhibit concrete crushing and spalling failure, respectively, while composite columns using UHPFRC exhibit concrete spitting and no concrete spalling is observed after failure. The incorporation of steel fiber as micro reinforcement significantly improves the concrete toughness, restrains the crack propagation and thus avoids the concrete spalling. No evidence of local buckling of rebars or yielding of stirrups has been detected in composite columns using UHPFRC. Steel fibers improve the bond strength between the concrete and, rebars and core shaped steel which contribute to the improvement of confining pressure on concrete. Three prediction models in Eurocode 4, AISC 360 and JGJ 138 and a proposed toughness index (T.I.) are employed to evaluate the compressive resistance and post peak ductility of the composite columns. It is found that all these three models predict close the compressive resistance of UHPFRC encased composite columns with/without the transverse reinforcement. UHPFRC encased composite columns can achieve a comparable level of ductility with the reinforced concrete (RC) columns using normal strength concrete. In terms of compressive resistance behavior, the feasibility of UHPFRC encased steel composite stub columns with lesser longitudinal reinforcement and stirrups has been verified in this study.

Distributed crack sensors featuring unique memory capability for post-earthquake condition assessment of RC structures

  • Chen, Genda;McDaniel, Ryan;Sun, Shishuang;Pommerenke, David;Drewniak, James
    • Smart Structures and Systems
    • /
    • 제1권2호
    • /
    • pp.141-158
    • /
    • 2005
  • A new design of distributed crack sensors based on the topological change of transmission line cables is presented for the condition assessment of reinforced concrete (RC) structures during and immediately after an earthquake event. This study is primarily focused on the performance of cable sensors under dynamic loading, particularly a feature that allows for some "memory" of the crack history of an RC member. This feature enables the post-earthquake condition assessment of structural members such as RC columns, in which the earthquake-induced cracks are closed immediately after an earthquake event due to gravity loads, and are visually undetectable. Factors affecting the onset of the feature were investigated experimentally with small-scale RC beams under cyclic loading. Test results indicated that both crack width and the number of loading cycles were instrumental in the onset of the memory feature of cable sensors. Practical issues related to dynamic acquisition with the sensors are discussed. The sensors were proven to be fatigue resistant from shake table tests of RC columns. The sensors continued to show useful performance after the columns can no longer support additional loads.

Cyclic performance of steel fiber-reinforced concrete exterior beam-column joints

  • Oinam, Romanbabu M.;Kumar, P.C. Ashwin;Sahoo, Dipti R.
    • Earthquakes and Structures
    • /
    • 제16권5호
    • /
    • pp.533-546
    • /
    • 2019
  • This study presents an experimental investigation on six beam-column joint specimens under the lateral cyclic loading. The aim was to explore the effectiveness of steel fiber-reinforced concrete (SFRC) in reducing the transverse shear stirrups in beam-column joints of the reinforced concrete (RC) frames with strong-columns and weak-beams. Two RC and four SFRC specimens with different types of reinforcement detailing and steel fibers of volume fraction in the range of 0.75-1.5% were tested under gradually increasing cyclic displacements. The main parameters investigated were lateral load-resisting capacity, hysteresis response, energy dissipation capacity, stiffness degradation, viscous damping variation, and mode of failure. Test results showed that the diagonally bent configuration of beam longitudinal bars in the beam-column joints resulted in the shear failure at the joint region against the flexural failure of beams having straight bar configurations. However, all SFRC specimens exhibited similar lateral strength, energy dissipation potential and mode of failure even in the absence of transverse steel in the beam-column joints. Finally, a methodology has been proposed to compute the shear strength of SFRC beam-column joints under the lateral loading condition.

횡보강근 배근형상에 따른 RC 기둥의 연성에 관한 실험적 연구 (Experimental Study on Ductility of RC Columns According to Configuration of Transverse Reinforcement)

  • 김민준;김도진;김상우;이정윤;김길희
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제16권6호
    • /
    • pp.18-25
    • /
    • 2012
  • 이 연구에서는 횡보강근의 배근형상에 따른 철근콘크리트 기둥의 휨 연성을 평가하였다. 이를 위하여 총 8체의 철근콘크리트 기둥 실험체를 휨 실험하였다. 실험변수는 횡보강근의 배근형상과 항복강도 및 횡보강근량으로 하였다. 실험체는 $250{\times}250mm$ 단면을 가지도록 계획하였으며, 휨 파괴를 유도하기 위하여 전단경간비를 4.1로 계획하였다. 이 실험에서는 일정한 축하중과 함께 반복 횡하중을 실험체에 가력하였다. 실험결과, 제안된 횡보강근 배근형상을 가지는 실험체가 기존 띠철근을 가지는 실험체보다 더 높은 연성과 에너지 소산 능력을 나타냄을 확인할 수 있었다.

정적실험을 통한 조적채움벽체가 비내진상세 RC 골조의 내진성능에 미치는 영향 평가 (An Experimental Study on the Influence of Masonry InFilled Walls on the Seismic Performance of Reinforced Concrete Frames with Non-seismic Details)

  • 김경민;천주현;백은림;오상훈;황철성
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제21권3호
    • /
    • pp.114-120
    • /
    • 2017
  • 본 논문에서는 국내 비내진상세 조적채움벽 RC 골조의 내진성능을 파악하기 위하여 실규모 크기의 비내진상세 조적채움벽 RC 골조를 대상으로 정적실험을 실시하였으며, 기존 비내진상세 RC 골조 의 정적 실험결과와의 비교 분석을 통하여 조적채움벽체가 RC 골조의 내진성능에 미치는 영향에 대하여 평가하였다. 실험 결과. 조적채움벽 RC 골조 실험체는 조적채움벽체에 의한 압축력으로 기둥, 보, 접합부 등 골조 전체에 균열 등의 손상이 발생하였으며, 접합부 전단균열이 벌어지고 철근이 노출되면서 취성 파괴되었다. 한편, 조적체움벽 RC 골조 실험체의 수평하중과 층간변형각 관계는 벽체 슬라이딩 균열, 기둥 균열 등으로 강성이 저하되었으며, 철근 항복이후 최대 내력에 도달하고 접합부 균열의 확대, 철근 노출 등으로 내력이 최대 내력의 40% 정도로 저하되었다. 조적채움벽체로 인하여 기둥 상 하단 및 접합부에만 집중되던 손상이 기둥, 보, 접합부 등 골조 전체에 분산되어 발생하였으며, 기둥의 전단균열이 아닌 접합부의 전단균열의 확대로 최종 파괴되었다. 또한, 조적채움벽체로 인하여 RC 골조의 강성은 12.42배, 내력은 3.63배 증가한 반면에, 강성 증가에 따라 최대 내력 시의 층간변형각은 0.18배, 파괴시의 변형은 절반 이하로 감소하였다.

Assessment of seismic demand and damping of a reinforced concrete building after CFRP jacketing of columns

  • Inci, Pinar;Goksu, Caglar;Tore, Erkan;Binbir, Ergun;Ates, Ali Osman;Ilki, Alper
    • Structural Engineering and Mechanics
    • /
    • 제82권5호
    • /
    • pp.651-665
    • /
    • 2022
  • While the lateral confinement provided by an FRP jacket to a concrete column is passive in nature, confinement is activated when the concrete expands due to additional compression stresses or significant shear deformations. This characteristic of FRP jacketing theoretically leads to similar initial stiffness properties of FRP retrofitted buildings as the buildings without retrofit. In the current study, to validate this theoretical assumption, the initial stiffness characteristics, and thus, the potential seismic demands were investigated through forced vibration tests on two identical full-scale substandard reinforced concrete buildings with or without FRP retrofit. Power spectral density functions obtained using the acceleration response data captured through forced vibration tests were used to estimate the modal characteristics of these buildings. The test results clearly showed that the natural frequencies and the mode shapes of the buildings are quite similar. Since the seismic demand is controlled by the fundamental vibration modes, it is confirmed using vibration-based full-scale tests that the seismic demands of RC buildings remain unchanged after CFRP jacketing of columns. Furthermore, the damping characteristics were also found similar for both structures.

A GMDH-based estimation model for axial load capacity of GFRP-RC circular columns

  • Mohammed Berradia;El Hadj Meziane;Ali Raza;Mohamed Hechmi El Ouni;Faisal Shabbir
    • Steel and Composite Structures
    • /
    • 제49권2호
    • /
    • pp.161-180
    • /
    • 2023
  • In the previous research, the axial compressive capacity models for the glass fiber-reinforced polymer (GFRP)-reinforced circular concrete compression elements restrained with GFRP helix were put forward based on small and noisy datasets by considering a limited number of parameters portraying less accuracy. Consequently, it is important to recommend an accurate model based on a refined and large testing dataset that considers various parameters of such components. The core objective and novelty of the current research is to suggest a deep learning model for the axial compressive capacity of GFRP-reinforced circular concrete columns restrained with a GFRP helix utilizing various parameters of a large experimental dataset to give the maximum precision of the estimates. To achieve this aim, a test dataset of 61 GFRP-reinforced circular concrete columns restrained with a GFRP helix has been created from prior studies. An assessment of 15 diverse theoretical models is carried out utilizing different statistical coefficients over the created dataset. A novel model utilizing the group method of data handling (GMDH) has been put forward. The recommended model depicted good effectiveness over the created dataset by assuming the axial involvement of GFRP main bars and the confining effectiveness of transverse GFRP helix and depicted the maximum precision with MAE = 195.67, RMSE = 255.41, and R2 = 0.94 as associated with the previously recommended equations. The GMDH model also depicted good effectiveness for the normal distribution of estimates with only a 2.5% discrepancy from unity. The recommended model can accurately calculate the axial compressive capacity of FRP-reinforced concrete compression elements that can be considered for further analysis and design of such components in the field of structural engineering.

Comparisons of Elasto-Fiber and Fiber & Bernoulli-Euler reinforced concrete beam-column elements

  • Karaton, Muhammet
    • Structural Engineering and Mechanics
    • /
    • 제51권1호
    • /
    • pp.89-110
    • /
    • 2014
  • In this study, two beam-column elements based on the Elasto-Fiber element theory for reinforced concrete (RC) element have been developed and compared with each other. The first element is based on Elasto Fiber Approach (EFA) was initially developed for steel structures and this theory was applied for RC element in there and the second element is called as Fiber & Bernoulli-Euler element approach (FBEA). In this element, Cubic Hermitian polynomials are used for obtaining stiffness matrix. The beams or columns element in both approaches are divided into a sub-element called the segment for obtaining element stiffness matrix. The internal freedoms of this segment are dynamically condensed to the external freedoms at the ends of the element by using a dynamic substructure technique. Thus, nonlinear dynamic analysis of high RC building can be obtained within short times. In addition to, external loads of the segment are assumed to be distributed along to element. Therefore, damages can be taken account of along to element and redistributions of the loading for solutions. Bossak-${\alpha}$ integration with predicted-corrected method is used for the nonlinear seismic analysis of RC frames. For numerical application, seismic damage analyses for a 4-story frame and an 8-story RC frame with soft-story are obtained to comparisons of RC element according to both approaches. Damages evaluation and propagation in the frame elements are studied and response quantities from obtained both approaches are investigated in the detail.

Experimental study on shear capacity of SRC joints with different arrangement and sizes of cross-shaped steel in column

  • Wang, Qiuwei;Shi, Qingxuan;Tian, Hehe
    • Steel and Composite Structures
    • /
    • 제21권2호
    • /
    • pp.267-287
    • /
    • 2016
  • The seismic performance of the ordinary steel reinforced concrete (SRC) columns has no significant improvement compared to the reinforced concrete (RC) columns mainly because I, H or core cross-shaped steel cannot provide sufficient confinement for core concrete. Two improved SRC columns by constructing with new-type shaped steel were put forward on this background, and they were named as enlarging cross-shaped steel and diagonal cross-shaped steel for short. The seismic behavior and carrying capacity of new-type SRC columns have been researched theoretically and experimentally, while the shear behavior remains unclear when the new-type columns are joined onto SRC beams. This paper presents an experimental study to investigate the shear capacity of new-type SRC joints. For this purpose, four new-type and one ordinary SRC joints under low reversed cyclic loading were tested, and the failure patterns, load-displacement hysteretic curves, joint shear deformation and steel strain were also observed. The ultimate shear force of joint specimens was calculated according to the beam-end counterforce, and effects of steel shape, load angel and structural measures on shear capacity of joints were analyzed. The test results indicate that: (1) the new-type SRC joints display shear failure pattern and has higher shear capacity than the ordinary one; (2) the oblique specimens have good bearing capacity if designed reasonably; and (3) the two proposed construction measures have little effect on the shear capacity of SRC joints embedded with diagonal cross-shaped steel. Based on the mechanism observed from the test, the formulas for calculating ultimate shear capacity considering the main factors (steel web, stirrup and axial compression ratio) were derived, and the calculated results agreed well with the experimental and simulated data.