• Title/Summary/Keyword: reinforced columns

Search Result 1,121, Processing Time 0.026 seconds

Dynamic behavior of SRC columns with built-in cross-shaped steels subjected to lateral impact

  • Liu, Yanhua;Zeng, Lei;Liu, Changjun;Mo, Jinxu;Chen, Buqing
    • Structural Engineering and Mechanics
    • /
    • v.76 no.4
    • /
    • pp.465-477
    • /
    • 2020
  • This paper presents an investigation on the dynamic behavior of SRC columns with built-in cross-shaped steels under impact load. Seven 1/2 scaled SRC specimens were subjected to low-speed impact by a gravity drop hammer test system. Three main parameters, including the lateral impact height, the axial compression ratios and the stirrup spacing, were considered in the response analysis of the specimens. The failure mode, deformation, the absorbed energy of columns, as well as impact loads are discussed. The results are mainly characterized by bending-shear failure, meanwhile specimens can maintain an acceptable integrity. More than 33% of the input impact energy is dissipated, which demonstrates its excellent impact resistance. As the impact height increases, the flexural cracks and shear cracks observed on the surface of specimens were denser and wider. The recorded time-history of impact force and mid-span displacement confirmed the three stages of relative movement between the hammer and the column. Additionally, the displacements had a notable delay compared to the rapid changes observed in the measured impact load. The deflection of the mid-span did not exceed 5.90mm while the impact load reached peak value. The impact resistance of the specimen can be improved by proper design for stirrup ratios and increasing the axial load. However, the cracking and spalling of the concrete cover at the impact point was obvious with the increasing in stiffness.

A comparative study between the new model and the current model for T-shaped combined footings

  • Garay-Gallegos, Jesus Rafael;Luevanos-Rojas, Arnulfo;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel;Aguilera-Mancilla, Gabriel;Garcia-Canales, Edith
    • Geomechanics and Engineering
    • /
    • v.30 no.6
    • /
    • pp.525-538
    • /
    • 2022
  • This paper presents a more general model for T-shaped combined footings that support two columns aligned on a longitudinal axis and each column provides an axial load and two orthogonal moments. This model can be applied to the following conditions: (1) without restrictions on its sides, (2) a restricted side and (3) two opposite sides restricted. This model considers the linear soil pressure. The recently published works have been developed for a restricted side and for two opposite sides restricted by Luévanos-Rojas et al. (2018a, b). The current model considers the uniform pressure distribution because the position of the resultant force coincides with the center of gravity of the surface of the footing in contact with the soil in direction of the longitudinal axis where the columns are located. This paper shows three numerical examples. Example 1 is for a T-shaped combined footing with a limited side (one column is located on the property boundary). Example 2 is for a T-shaped combined footing with two limited opposite sides (the two columns are located on the property boundary). Example 3 is for a T-shaped combined footing with two limited opposite sides, one column is located in the center of the width of the upper flange (b1/2=L1), and other column is located at a distance half the width of the strip from the free end of the footing (b2/2=b-L1-L). The main advantage of this work over other works is that this model can be applied to T-shaped combined footings without restrictions on its sides, a restricted side and two opposite sides restricted. It also shows the deficiencies of the current model over the new model.

Analysis of axial compression performance of BFRRAC-filled square steel tubular column

  • Xianggang Zhang;Jixiang Niu;Wenlong Shen;Dapeng Deng;Yajun Huang
    • Steel and Composite Structures
    • /
    • v.49 no.4
    • /
    • pp.457-471
    • /
    • 2023
  • To make up for the performance weaknesses of recycled aggregate concrete (RAC), expand the application range of RAC, and alleviate the environmental problems caused by excessive exploitation of natural coarse aggregates (NCA), this study proposes a basalt fiber-reinforced recycled aggregate concrete (BFRRAC)-filled square steel tubular columns that combines two modification methods of steel tube and fiber, which may greatly enhance the mechanical properties of RAC. The axial compression performance for BFRRAC-filled square steel tubular columns was reported during this study. Seven specimens with different replacement ratios of recycled coarse aggregate (RCA), length-diameter ratios, along with basalt fiber (BF) contents were designed as well as fabricated for performing axial compression test. For each specimen, the whole failure process as well as mode of specimen were discovered, subsequently the load-axial displacement curve has obtained, after which the mechanical properties was explained. A finite element analysis model for specimens under axial compression was then established. Subsequently, based on this model, the factors affecting axial compression performance for BFRRAC-filled square steel tubes were extended and analyzed, after which the corresponding design suggestion was proposed. The results show that in the columns with length-diameter ratios of 5 and 8, bulging failure was presented, and the RAC was severely crushed at the bulging area of the specimen. The replacement ratio of RCA as well as BF content little affected specimen's peak load (less than 5%). As the content of BF enhanced from 0 kg/m3 to 4 kg/m3, the dissipation factor and ductility coefficients increased by 10.2% and 5.6%, respectively, with a wide range.

Experiment and Strength Analysis of High-Strength RC Columns (고강도 철근 콘크리트 기둥의 실험 및 강도해석)

  • Son, Hyeok-Soo;Kim, Jun-Beom;Lee, Jae-Hoon
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.149-160
    • /
    • 1999
  • This paper is a part of a research aimed at the verification of basic design rules of high-strength concrete columns. A total of 32 column specimens were tested to investigate structural behavior and strength of eccentrically loaded reinforced concrete tied columns. Main variables included in this test program were concrete compressive strength. steel amount, eccentricity, and slenderness ratio. The concrete compressive strength varied from 356 kg/$cm^2$ to 951 kg/$cm^2$ and the longitudinal steel ratios were between 1.13 % and 5.51 %. Test results of column sectional strength are compared with the results of analyses by ACI rectangular stress block, trapezoidal stress block, and modified rectangular stress block. Axial force-moment-curvature analysis is also performed for predicting axial load-moment strength and compared with the test results. The ACI rectangular stress block provides over-estimated column strengths for the lightly reinforced high strength column specimens. The calculated strengths by moment-curvature analyses are highly affected by $k_3$ values of the concrete stress-strain curve. Observed failure mode. concrete ultimate strain, and stress block parameters are discussed.

CO2 Emissions Evaluation for Steel Reinforced Concrete Columns Based on the Optimal Structural Design (최적구조설계를 이용한 SRC 기둥의 CO2 배출량 평가)

  • Choi, Se Woon;Jeon, Ji Hye;Lee, Hwanyoung;Kim, Yousok;Park, Hyo Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.5
    • /
    • pp.335-342
    • /
    • 2013
  • Since the seriousness of environmental pollution came to the fore recently, various efforts have been made globally for the reduction of the environmental load. In particular, in the field of construction, an industry responsible for a considerable amount of pollution, studies have been actively conducted to reduce $CO_2$ emissions and energy consumption. However, most conventional research about pollution as it relates to construction is focused on the maintenance stages where $CO_2$ emissions are the greatest. Research related to the design stage is in its infancy, as it has only been conducted thus far on steel buildings and RC buildings. In fact, in order to achieve environmentally friendly construction considering the Life Cycle Assessment(LCA), the building design should be derived to reduce the $CO_2$ emissions from the early building design stage, and structural engineers should be able to suggest a design plan considering its environmental friendliness. In this study, optimal structural design method for steel reinforced concrete(SRC) columns considering $CO_2$ emissions is presented. The trends of $CO_2$ emissions in SRC columns according to the variations of steel shapes, concrete strengths and loads are investigated.

Optimum Design of the Intake Tower of Rerervoir -With Application of Strength Design Method- (저수지 취수탑의 최적설계에 관한 연구(II) -강도설계법을 중심으로-)

  • 김종옥;고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.3
    • /
    • pp.82-94
    • /
    • 1988
  • A growing attention has been paid to the optimum design of structures in recent years. Most studies on the optimum design of reinforced concrete structures has been mainly focussed to the design of structural members such as beams, slabs and columns, and there exist few studies that deal with the optimum design of large-scale concrete shell structures. The purpose of the present investigation is, therefore, to set up an efficient optimum design method for the large-scale reinforced concrete cylindrical shell structures like intake tower of reservoir. The major design variables are the dimensions and steel areas of each member of structures. The construction cost which is compo8ed of the concrete, steel, and form work costs, respectively, is taken as the objective function. The constraint equations for the design of intake-tower are derived on the basis of strength design method. The results obtained are summarized as follows 1. The efficient optimlzation algorithrns which can execute the automatic optimum design of reinforced concrete intake tower based on the strength design method were developed. 2. Since the objective function and design variables were converged to their optimum values within the first or second iteration, the optimization algorithms developed in this study seem to be efficient and stable. 3. When using the strength design method, the construction cost could be saved about 9% compared with working stress design method. Therefore, the reliability of algorithm was proved. 4. The difference in construction cost between the optimum designs with substructures and with entire structure was found to be small and thus the optimum design with substructures may conveniently be used in practical design. 5. The major active constraints of each structural member were found to be the 'bending moment constraint for slab, the minimum longitudinal steel ratio constraint for tower body and the shearing force, bending moment and maximum eccentricity constraints for footing, respectively. 6. The computer program developed in the present study can be effectively used even by an uneiperienced designer for the optimum design of reinforced concrete intake-tower on the basis of strength design method.

  • PDF

Modeling and Parametric Studies on Moment-Curvature Relation of a Reinforced Concrete Column Subject In Axial-toad and Bi-Axil Moment (축하중과 이축모멘트를 받는 철근콘크리트 기둥의 모멘트-곡률에 관한 모델링 및 변수고찰)

  • 이차돈;최기봉;차준실;김성진
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.677-688
    • /
    • 2002
  • A analytical model is developed which can simulate a complete inelastic biaxial moment-curvature relations of a reinforced concrete column. The model can simulate sudden drop in moment capacity after peak moment and due to spalling of cover concrete. Parametric studies are performed examine the effects of constituent material properties as well as topological arrangement of reinforcements on moment-curvature relations and P-M interaction curve. It has been analytically observed that ductility of a reinforced concrete column is influenced mostly by magnitude of the axial load and spacings or the volume of lateral reinforcements. Compared to ACI P-M interaction curve, overall increase about 10% in square root of sum of squares of axial force and moment, and about 20% in peak load are observed for the columns reinforced according to ACI seismic design code.

Settlement Reduction Effect of the Geogrid Reinforced Stone Column System (고강도 지오그리드로 보강된 Stone Column 공법의 침하감소효과)

  • Park, Sis-Am;Cho, Sung-Han;Yoo, Chung-Sik;Lee, Dae-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.1
    • /
    • pp.15-23
    • /
    • 2006
  • Sand Compaction Pile and Stone Column method have been used in widely during several decades as a technique to reinforce soft soils and increasing ultimate bearing capacity, accelerate consolidation settlement of the foundation ground. Stone column method, making a compaction pile using crushed stone, is a soft ground improvement method. However, stone column method is difficult to apply to the ground which is not mobilized enough lateral confine pressure because no bulging failure resistance. Hence, in present study, development the geogrid reinforced stone column system for settlement reduction and wide range of application of stone columns. To develop this system, triaxial compression tests were conducted for evaluation which is about behavior characteristics of stone column on replacement rate and confine pressure. Then, 3-dimensional numerical analysis were evaluated for application of the GRSC (geogrid reinforced stone column) system as evaluate behavior characteristics and settlement reduction effect of stone column reinforced by geogrid on types and reinforcing depth change of geogrid.

  • PDF

Structural Behavior of Reinforced Concrete Short Columns by Pseudo-Dynamic Test (유사동적실험을 이용한 철근콘크리트 단주실험에 관한 연구)

  • Min, Kyung-Min;Kim, Yong-In;Lee, Kang-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.73-76
    • /
    • 2008
  • According to the survey of earthquake disaster, low-rise reinforced concrete building larger by the extent of damage and because of the underlying distribution of reinforced concrete structures more, it is very likely to be disasters. The purpose of this study is to discuss how strength and stiffness of each system in low-rise reinforced concrete buildings consisted of extremely brittle, shear and flexural failure lateral-load resisting systems have influence on seismic capacities of the overall system. Generally, if shear failure members including extremely brittle failure members are failed during an earthquake, the lateral-load resisting seismic capacities of RC buildings are lower rapidly, and if the seismic capacities of shear failure members were higher than that of flexural failure members, failures of shear failure members have influence on failures of the overall system. The result of this paper will provide pseudo-dynamic test of carried out to estimate the possibility of proposals.

  • PDF

Improved Transmission of UHSC Column Loads by Puddling of Fiber Reinforced UHSC (강섬유 보강 초고강도 콘크리트의 확대 타설을 통한 기둥 하중 전달 성능 향상)

  • Lee, Joo-Ha;Yang, Jun-Mo;Lee, Seung-Hoon;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.209-216
    • /
    • 2007
  • This study reports on the structural characteristics of slab-column connections using fiber-reinforced ultra-high-strength concrete (UHSC). Compression tests were performed on two slab-column and four isolated column specimens. In the column load tests, slab loads were also applied on the slab-column specimens so that the actual confinement condition at the slab-column joint was considered. The main parameter investigated was the "puddling" of fiber-reinforced UHSC. This paper also investigates the effects of some parameters, such as confinement of slab concrete, steel fibers, and concrete strength of the joint, related to the ability of the slab-column specimens and isolated column specimens without the surrounding slab to transmit axial loads from the UHSC columns through slab-column connections. Furthermore, the ACI Code (2005) and the CSA Standard (2004) are compared to the experimental results. The beneficial effects of the puddling of fiber-reinforced UHSC on the transmission of column loads through slab-column connections are demonstrated.