• Title/Summary/Keyword: reinforced columns

Search Result 1,121, Processing Time 0.024 seconds

Axial compressive behavior of high strength concrete-filled circular thin-walled steel tube columns with reinforcements

  • Meng Chen;Yuxin Cao;Ye Yao
    • Structural Engineering and Mechanics
    • /
    • v.88 no.1
    • /
    • pp.95-107
    • /
    • 2023
  • In this study, circular thin-walled reinforced high strength concrete-filled steel tube (RHSCFST) stub columns with various tube thicknesses (i.e., 1.8, 2.5 and 3.0mm) and reinforcement ratios (i.e., 0, 1.6%, 2.4% and 3.2%) were fabricated to explore the influence of these factors on the axial compressive behavior of RHSCFST. The obtained test results show that the failure mode of RHSCFST transforms from outward buckling and tearing failure to drum failure with the increasing tube thickness. With the tube thickness and reinforcement ratio increased, the ultimate load-carrying capacity, compressive stiffness and ductility of columns increased, while the lateral strain in the stirrup decreased. Comparisons were also made between test results and the existing codes such as AIJ (2008), BS5400 (2005), ACI (2019) and EC4 (2010). It has been found that the existing codes provide conservative predictions for the ultimate load-carrying capacity of RHSCFST. Therefore, an accurate model for the prediction of the ultimate load-carrying capacity of circular thin-walled RHSCFST considering the steel reinforcement is developed, based on the obtained experimental results. It has been found that the model proposed in this study provides more accurate predictions of the ultimate load-carrying capacity than that from existing design codes.

Cost effective design of RC building frame employing unified particle swarm optimization

  • Payel Chaudhuri;Swarup K. Barman
    • Advances in Computational Design
    • /
    • v.9 no.1
    • /
    • pp.1-23
    • /
    • 2024
  • Present paper deals with the cost effective design of reinforced concrete building frame employing unified particle swarm optimization (UPSO). A building frame with G+8 stories have been adopted to demonstrate the effectiveness of the present algorithm. Effect of seismic loads and wind load have been considered as per Indian Standard (IS) 1893 (Part-I) and IS 875 (Part-III) respectively. Analysis of the frame has been carried out in STAAD Pro software.The design loads for all the beams and columns obtained from STAAD Pro have been given as input of the optimization algorithm. Next, cost optimization of all beams and columns have been carried out in MATLAB environment using UPSO, considering the safety and serviceability criteria mentioned in IS 456. Cost of formwork, concrete and reinforcement have been considered to calculate the total cost. Reinforcement of beams and columns has been calculated with consideration for curtailment and feasibility of laying the reinforcement bars during actual construction. The numerical analysis ensures the accuracy of the developed algorithm in providing the cost optimized design of RC building frame considering safety, serviceability and constructional feasibilities. Further, Monte Carlo simulations performed on the numerical results, proved the consistency and robustness of the developed algorithm. Thus, the present algorithm is capable of giving a cost effective design of RC building frame, which can be adopted directly in construction site without making any changes.

Spalling Analysis of High-Strength Reinforced Concrete Columns under High Temperature (고온에 노출된 고강도 콘크리트 기둥의 폭렬해석)

  • Shin, Sung-Woo;Yoo, Suk-Hyeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.6
    • /
    • pp.193-200
    • /
    • 2007
  • The spalling analysis of high strength concrete columns needs a very complex and difficult process accounting for peeling of cover concrete as well as thermal, thermo-stress and hygro-transfer phenomena. However, the study on the spalling analysis method is insufficient. The practical spalling analysis algorithm is developed in this study, which formulates a vapor pressure equation as the parameter of temperature and cover depth and uses the compatibility condition In results of the spalling analysis, as the concrete strength increases and the content of PP fiber decreases the degree of spalling increases. This shows a similar result as the previous experimental study. Therefore the developed algorithm suggested in this study is expected to be useful in predicting the spalling of high strength concrete columns.

Seismic Response of Exterior RC Column-to-Steel Beam Connections (I. Experiment) (콘크리트 기둥-강재 보 외부 접합부의 내진성능(I. 실험))

  • 조순호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.275-282
    • /
    • 2000
  • The seismic behavior of moment connections consisting of reinforced concrete columns and steel beams is investigated based on four 2/3 scale tests of exterior beam-column joints subject to reversed cyclic loading. The major test parameters were the number of hoops the isolated concrete contribution and the use of headed studs in the joint regions between columns and beams. Their influence on the seismic response of the connections is presented and compared. Among them the CF3 specimen containing two hoops each in the joint and column regions above and below exhibited the most favourable hysteretic response. This indicates that this type of joint details can be used in the low seismic areas such as Korea.

  • PDF

Seismic Performance Evaluation of Shear-Critical R/C Bridge Piers Retrofitted with Fiber Sheets (섬유 보강된 휨전단 RC교각의 내전성능 평가)

  • 송호진;정영수;김용곤;이은희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.195-202
    • /
    • 2002
  • Lap splices of longitudinal reinforcement steels were practically located in the potential plastic hinge region of most bridge columns that were constructed before the 1992 seismic design provision of Roadway Bridge Design Specification in Korea. The objective of this research is to evaluate the seismic performance of shear-critical reinforced concrete(RC) bridge piers with poor detailing of the starter bars in the plastic hinge region, and to develop the enhancement scheme of their seismic capacity by retrofitting with fiber composites. Seven test specimens in the aspect ratio of 2.5 were made with three confinement ratios and two types of lap splices. Quasi-static test was conducted in a displacement-controlled test mode. A significant reduction of displacement ductility ratios were observed for test columns with lap splices of longitudinal steels.

  • PDF

Investigation of load transfer along interfaces of jacketed square columns

  • Achillopoulou, Dimitra V.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.3
    • /
    • pp.293-302
    • /
    • 2017
  • This study deals with a numerical investigation of load transfer along interfaces of jacketed columns using finite element models. Appropriate plasticity and constitutive models are used to simulate the response of concrete and steel bars. Experimental data were used to calibrate the simulation of mechanical characteristics. The different compressive strength of core and jacket concrete, the confinement ratio, the dowels' diameter size and the load pattern shapes were considered. The path diagrams along the interfaces elucidate the areas around the dowel bars where due to stress concentration plastic hinges and intense discontinuities are created. The stress flow also depicts the contribution of confinement of the jacketed area to the overall resonant load capacity of the core column. The scope of the research is to identify and quantify the shear transfer along the interfaces of strengthened elements.

Quasi-Static Test for Seismic Performance of R/C Bridge Piers Retrofitted with Glassfibers (준정적실험에 의한 섬유보강된 철근콘크리트 교각의 내진성능 평가)

  • 이대형;이재형;정영수;박진영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.871-876
    • /
    • 2001
  • Recent earthquakes in California and Japan caused extensive damage to highway bridge structures. It is also thought that during probable earthquakes bridge structures in Korea could be failed due to the structural deficiencies, which were nonseismically designed and constructed before 1992. In these regards, innovative strengthening methods have been developed to repair reinforced concrete bridge columns, especially by glassfiber sheet bonding methods which are widely used today. The primary objective of this research is to investigate the seismic behavior of RC bridge columns retrofitted with composite straps and to propose pertinent guidelines of repair and rehabilitation method for earthquake resistant design procedure of RC bridges which are located in low or moderate seismicity regions. Six scaled-down concrete test specimens were made with test variables such as lap splice ratio, axial force ratio, confinement ratio, composite straps in the plastic hinge region. Pertinent design guidelines could be developed for the earthquake resistant design of RC bridge piers retrofitted with glassfibers in low or moderate seismic region.

  • PDF

Quasi-Static Test for Seismic Performance of R/C Bridge Piers with Lap Splices (준정적실험에 의한 겹이음된 철근콘크리트 교각의 내진성능 평가)

  • Chung, Young-Soo;Lee, Jae-Hyung;Kim, Yong-Gon;Kim, Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.877-882
    • /
    • 2001
  • Lap splice in plastic hinge region of RC bridge piers is inevitable because of the constructional joint between footing and column. RC circular columns with lap-splice in plastic hinge region are widely used in Korean highway bridges. It is, however, believed that there are not many experimental research works for nonlinear behavior of these columns subjected to earthquake motions. This study has been performed to verify the effect of axial force, lap splice and confinement steel ratio for the seismic behaviour of reinforced concrete bridge piers. Quasi-static test have been done to investigate the physical seismic performance of RC bridge piers, such as displacement ductility and enemy absorption.

  • PDF

Chloride Penetration in Circular Concrete Columns

  • Morga, M.;Marano, G.C.
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.2
    • /
    • pp.173-183
    • /
    • 2015
  • Most of the diffusion models of chloride ions in reinforced concrete (RC) elements proposed in literature are related to an isotropic homogeneous semi-infinite medium. This assumption reduces the mathematical complexity, but it is correct only for plane RC elements. This work proposes a comparison between the diffusion model of chloride ions in RC circular columns and in RC slab elements. The durability of RC cylindric elements estimated with the circular model instead of the plane model is shown to be shorter. Finally, a guideline is formulated to properly use the standard and more simple plane model instead of the circular one to estimate the time to corrosion initiation of cylindrical RC elements.

Seismic Ductility of RC Circular Column-Bent Piers under Bidirectional Repeated Loadings (이축반복하중을 받는 2주형 철근콘크리트 교각의 내진 연성도)

  • Park Chang Kyu;LEE Bum Gi;Song Hee Won;Chung Young Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.692-695
    • /
    • 2004
  • Seismic performance of reinforced concrete(RC) column bent piers to bidirectional seismic loadings was investigated experimentally. RC column bent piers represent one of the most popular forms of piers used in highway bridges. Further to series of previous experimental researches for the performance of single bridge columns subjected to seismic loadings, four column bent piers were constructed in 400 mm diameter and 2,000 mm height. Each pier has two circular supporting columns. These piers were tested under lateral load reversals with axial load of $0.1f_{ck}A_g$. Bidirectional lateral loadings were applied. The test parameters included: different transverse reinforcement contents and lap-spliced longitudinal reinforcing steels. Test results indicate that lap-splices of longitudinal reinforcing steels have significantly influence on hysteretic response of column bent piers. Column capacity changed with the level of transverse confinement, and bidirectional repeated loadings induced more strength and stiffness degradation than unidirectional repeated loading.

  • PDF