• Title/Summary/Keyword: reinforced columns

Search Result 1,121, Processing Time 0.028 seconds

A Study on the Flexural Behavior of R.C Columns Confined by Lateral Ties (띠철근으로 구속된 철근 콘크리트 기둥의 휨 거동에 관한 연구)

  • 조세용;양근혁;이영호;정헌수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.601-604
    • /
    • 1999
  • The objective of this study is to investigate the flexural behavior of reinforced concrete columns confined by lateral ties. This test was carried on the twelve reinforced concrete columns, 200$\times$200$\times$800mm size. objected to flexure and constant axial loads. The main variables are concrete strength, the configuration of lateral ties and the amount of lateral ties. Test results indicated that steel configuration plays an important role in column behavior, and a proper configuration of lateral ties can be more ductile than the reduce of the space of lateral ties. By this experiment, the ductility of high-strength concrete columns designed on A.C.I Code is not adequate, and are concluded that the design of high-strength concrete column is executed by more lateral ties under high axial loads.

  • PDF

The Performance of Shear Strengthened Reinforced Concrete Columns with Carbon Fiber Sheets (탄소섬유시트로 전단 보강된 철근콘크리트 기둥의 성능 평가)

  • 강경원;하상수;나정민;이용택;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.733-736
    • /
    • 1999
  • R/C columns, one of the main structural members of reinforced concrete structures, usually sustain the axial forces of combined dead loads and live loads. When subjected to lateral loads, however, they are repeatedly subjected to bending moment, shearing forces and brittle failure such as shear failure can occur. This failure mode is not desirable and extra reinforcement is usually needed to induce a ductile failure. The design equation which is used to evaluate the maximum shear strength of a R/C column is still unsatisfactory. The objective of this study was, therefore, to evaluate the hysteretic strengthening effect and the maximum shear strength of R/C columns strengthened using carbon fibers on the seismic performance of the R/C columns under anti-symmetrical by acting moment. According to this study, it may be suggested that the shear of the strengthened R/C column were adequate to induce ductile failures.

  • PDF

Confined Model of High-Strength Reinforced Concrete Tied Columns (고강도 철근콘크리트 띠철근 기둥의 구속모델)

  • 이희수;한범석;신성우;반병렬;이광수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.923-928
    • /
    • 2002
  • Experimental and analytical study were conducted to develop the confined model of reinforced high strength concrete tied columns subjected to monotonically increasing concentric axial compression. Twenty-one large-scale columns(260$\times$260$\times$1200mm) used high strength concrete of 50 and 85MPa were fabricated to simulate an actual structural members size. Test results indicated that gains of strength and ductility of high strength concrete columns could be increased, if efficient arrangements and volumetric ratios of transverse reinforcements were provided. The proposed model satisfactorily predicted the experimental stress-strain curves for high strength concrete up to 100MPa.

  • PDF

Characteristic Behavior of High-Strength Reinforced Concrete Bridge Column under Simulated Seismic Loading (고강도 철근콘크리트 교각의 내진거동특성)

  • Ra Hong-Seong;Lee Kyoung-Joon;Ryu Hyo-Jin;Hwang Sun-Kyoung;Lee Chin-Ok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.22-27
    • /
    • 2004
  • This experimental investigation was conducted to examine the seismic performance of reinforced concrete bridge columns. The columns were subjected to a constant axial load and a cyclic horizontal load-inducing reversed bending moment. The variables studied in this research are the volumetric ratio of transverse reinforcement (ps = 0.96, 1.44 per cent) and axial load ratio (0.05, 0.1, 0.2 P/Po) and strength $(350kgf/cm^2,\;600kgf/cm^2)$. Test results show that bridge columns with 50 per cent higher amounts of transverse reinforcement than that required by seismic provisions of ACI 318-02 showed ductile behaviour. For bridge columns with axial load ratio(P/Po) less than 0.2, the ratio of Mmax over Mad, nominal moment capacity predicted by ACI 318-02 provisions, is consistently greater than 1 with approximately a 20 percent margin of safty.

  • PDF

Modeling of non-seismically detailed columns subjected to reversed cyclic loadings

  • Tran, Cao Thanh Ngoc
    • Structural Engineering and Mechanics
    • /
    • v.44 no.2
    • /
    • pp.163-178
    • /
    • 2012
  • A strut-and-tie model is introduced in this paper to predict the ultimate shear strength of non-seismically detailed columns. The validity and applicability of the proposed strut-and-tie model are evaluated by comparison with available experimental data. The model was developed based on visible crack patterns observed on the test specimens. The concrete contribution is integrated into the strut-and-tie model through a concept of equivalent transverse reinforcement. To further validate the model a full-scale non-seismically detailed reinforced concrete column was tested to investigate its seismic behavior. The specimen was tested under the combination of a constant axial load, $0.30f_c{^{\prime}}A_g$ and quasi-static cyclic loadings simulating earthquake actions. Quasi-static cyclic loadings simulating earthquake actions were applied to the specimen until it could not sustain the applied axial load. The analytical results reveal that the strut-and-tie method is capable of modeling to a satisfactory accuracy the ultimate shear strength of non-seismically detailed columns subjected to reserved cyclic loadings.

Applicability of over-coring technique to loaded RC columns

  • Campione, Giuseppe;Minafo, Giovanni
    • Structural Engineering and Mechanics
    • /
    • v.51 no.1
    • /
    • pp.181-197
    • /
    • 2014
  • Stress determination is a very important step in the assessment of the safety of existing reinforced concrete structures. In rock mechanic this goal is achieved with the over-coring technique. The main idea behind such a technique is to isolate a material sample from the stress field in the surrounding mass and monitor its re-equilibrium deformation response. If the materials remains elastic, and elastic properties are known, stresses may be obtained from the corresponding measured strains. The goal of this paper is to evaluate if the over-coring technique is applicable to reinforced concrete members. The results of an experimental investigation on the behaviour of compressed concrete columns subjected to the over-coring technique are presented. Considerations about the range of applicability of the technique are made by comparing the measured and the theoretical stresses. After that, results of failure tests on drilled specimens are presented and discussed. Furthermore, the response is compared with that of columns core-bored before the compressive test. Finally, comparisons with numerical analysis are shown.

New Seismic Design Concept for RC Bridge Columns

  • Lee, Jae-Hoon;Son, Hyeok-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.204-209
    • /
    • 2003
  • The purpose of this study is to develop new seismic design concept based on ductility demand for reinforced concrete bridge columns in areas of low to moderate seismicity. In developing the ductility based design approach, relationship between ductility demand and transverse reinforcement demand should be quantitatively developed. To evaluate ductility capacity of reinforced concrete columns, analytical models and a non-linear analysis program, NARCC have been developed. Based on analytical and experimental results, an equation for relationship between curvature ductility and displacement ductility, an equation for designing the transverse confinement reinforcement for ductility demand, and a new seismic design concept of RC bridge columns are presented.

  • PDF

Seismic performance of RC short columns with light transverse reinforcement

  • Tran, Cao Thanh Ngoc;Li, Bing
    • Structural Engineering and Mechanics
    • /
    • v.67 no.1
    • /
    • pp.93-104
    • /
    • 2018
  • The seismic behavior of reinforced concrete (RC) short columns with limited transverse reinforcement is investigated in this paper through an experimental program. The experimental program consists of four small-scale RC columns with an aspect ratio of 1.7, which are tested to the axial failure stage. The cracking patterns, hysteretic responses, strains in reinforcing bars, displacement decomposition and cumulative energy dissipation of the tested specimens are reported in detail in the paper. The effects of column axial load are investigated to determine how this variable might influence the performance of the short columns with limited transverse reinforcement. Brittle shear failure was observed in all tested specimens. Beneficial and detrimental effects on the shear strength and drift ratio at axial failure of the test specimens due to the column axial load are found in the experimental program, respectively.

An Experimental Study on Failure Modes of High Strength Reinforced Concrete Columns (고강도 철근콘크리트 기둥의 파괴거동에 관한 실험적 연구)

  • 최창익;박동규;손혁수;김준범;이재훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.442-445
    • /
    • 1997
  • With increasing use of high strength concrete tied columns in structural engineering, it becomes necessary to examine the applicability of related sections of current design codes. High strength concrete has an advantage of strength capacity and stiffness especially for column elements. This paper presents an experimental study of high strength concrete tied columns subjected to eccentric loading. The main variables included in this test were concrete compressive strength, steel amount, eccentricity, and slenderness ratio. The concrete compressive strength varied from 34.9Mpa(356kg/$\textrm{cm}^2$ ) to 93.2Mpa(951kg/$\textrm{cm}^2$ ) and the longitudinal steel ratios were between 1.1% and 5.5%. The eccentricity was selected for the different failure modes, i.e., compression control, balanced point, and tension control. The slenderness ratio varied from 19 to 61. The column specimens with same slenderness ratio but with different concrete compressive strength were constructed and tested. The purpose of this paper is to show failure modes of high strength reinforced concrete columns.

  • PDF

Effect of axial load on flexural behaviour of cyclically loaded RC columns

  • Au, F.T.K.;Bai, Z.Z.
    • Computers and Concrete
    • /
    • v.3 no.4
    • /
    • pp.261-284
    • /
    • 2006
  • The flexural behaviour of symmetrically reinforced concrete (RC) columns cast of normal- and high-strength concrete under both monotonic and cyclic loading is studied based on an analytical procedure, which employs the actual stress-strain curves and takes into account the stress-path dependence of concrete and steel reinforcement. The analysis is particularly extended into the post-peak stage with large inelastic deformation at various applied axial load level. The effect of axial load on their complete flexural behaviour is then identified based on the results obtained. The axial load is found to have fairly large effect on the flexural behaviour of RC columns under both monotonic and cyclic loading. Such effects are discussed through examination of various aspects including the moment-curvature relationship, moment capacity, flexural ductility, variation of neutral axis depth and steel stress.