• Title/Summary/Keyword: reinforced columns

Search Result 1,121, Processing Time 0.025 seconds

Displacement-based seismic design of reinforced concrete columns strengthened by FRP jackets using a nonlinear flexural model

  • Cho, Chang-Geun;Yun, Hee-Cheon;Kim, Yun-Yong
    • Computers and Concrete
    • /
    • v.6 no.2
    • /
    • pp.95-108
    • /
    • 2009
  • In the current research, a displacement-based seismic design scheme to retrofit reinforced concrete columns using FRP composite materials has been proposed. An accurate prediction for the nonlinear flexural analysis of FRP jacketed concrete members has been presented under multiaxial constitutive laws of concrete and composite materials. Through modification of the displacement coefficient method (DCM) and the direct displacement-based design method (DDM) of reinforced concrete structures, two algorithms for a performance-based seismic retrofit design of reinforced concrete columns with a FRP jacket have been newly introduced. From applications to retrofit design it is known that two methods are easy to apply in retrofit design and the DCM procedure underestimates the target displacement to compare with the DDM procedure.

Tests on fiber reinforced concrete filled steel tubular columns

  • Gopal, S. Ramana;Devadas Manoharan, P.
    • Steel and Composite Structures
    • /
    • v.4 no.1
    • /
    • pp.37-48
    • /
    • 2004
  • This paper deals with the strength and deformation of both short and slender concrete filled steel tubular columns under the combined actions of axial compression and bending moment. Sixteen specimens were tested to investigate the effect of fiber reinforced concrete on the ultimate strength and behavior of the composite column. The primary test parameters were load eccentricity and column slenderness. Companion tests were also undertaken on eight numbers of similar empty steel tubes to highlight the synergistic effects of composite column. The test results demonstrate the influence of fiber reinforced concrete on the strength and behavior of concrete filled steel tubular columns.

A new damage index for seismic fragility analysis of reinforced concrete columns

  • Kang, Jun Won;Lee, Jeeho
    • Structural Engineering and Mechanics
    • /
    • v.60 no.5
    • /
    • pp.875-890
    • /
    • 2016
  • A new structural damage index for seismic fragility analysis of reinforced concrete columns is developed based on a local tensile damage variable of the Lee and Fenves plastic-damage model. The proposed damage index is formulated from the nonlinear regression of experimental column test data. In contrast to the response-based damage index, the proposed damage index is well-defined in the form of a single monotonically-increasing function of the volume weighted average of local damage distribution, and provides the necessary computability and objectivity. It is shown that the present damage index can be appropriately zoned to be used in seismic fragility analysis. An application example in the computational seismic fragility evaluation of reinforced concrete columns validates the effectiveness of the proposed damage index.

An Behavior of RC Columns Using High Performance Fiber Reinforced Cement Composites under Axial Loads (일정축력을 받는 고인성 섬유보강 시멘트 복합체 기둥의 거동)

  • Hwang Sun-Kyoung;Yun Hyun-Do;Han Byung-Chan;Park Wan-Shin;Yang Il-Seung;Cheon Esther
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.87-90
    • /
    • 2005
  • An experimental investigation on the strength and behaviour of reinforced concrete columns using high performance fiber reinforced cement composites has been carried out. The columns were subjected to monotonic axial compression until failure. The variables in this study are the combination ratio of steel cord(SC) and Polyethylene (PE), and the volumetric ratio of transverse reinforcement Test results showed that the fibers, when used in a hybrid form, could result in superior composite performance compared to their individual fiber reinforced cement composites.

  • PDF

A new approach to determine the moment-curvature relationship of circular reinforced concrete columns

  • Caglar, Naci;Demir, Aydin;Ozturk, Hakan;Akkaya, Abdulhalim
    • Computers and Concrete
    • /
    • v.15 no.3
    • /
    • pp.321-335
    • /
    • 2015
  • To be able to understand the behavior of reinforced concrete (RC) members, cross sectional behavior should be known well. Cross sectional behavior can be best evaluated by moment-curvature relationship. On a reinforced concrete cross section moment-curvature relationship can be best determined by both experimentally or numerically with some complicated iteration methods. Making these experiments or iterations manually is very difficult and not practical. The aim of this study is to research the efficiency of Neural Networks (NN) as a more secure and robust method to obtain the moment-curvature relationship of circular RC columns. It is demonstrated that the NN based model is highly successful to determine the moment-curvature relationship of circular reinforced concrete columns.

An Experimental Study on RC Columns Using High Performance Fiber Reinforced Cement Composites (고인성 섬유보강 시멘트 복합체를 사용한 콘크리트 기둥의 실험적 연구)

  • Hwang Sun-Kyoung;Yun Hyun-Do;Han Byung-Chan;Park Wan-Shin;Jeon Esther;Yang Il-Seung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.631-634
    • /
    • 2004
  • An experimental investigation on the strength and behaviour of reinforced concrete columns using high performance fiber reinforced cement composites has been carried out. The columns were subjected to monotonic axial compression until failure. The variables in this study are the combination ratio of steel cord(SCI) and polypropylene(PP), and the volumetric ratio of transverse reinforcement Test results showed that the fibers, when used in a hybrid form, could result in superior composite performance compared to their individual fiber reinforced cement composites.

  • PDF

Confinement Effects of Reinforced Concrete Tied Columns (철근콘크리트 띠철근 기둥의 구속효과)

  • 왕성근;한범석;이희수;신성우;반병열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.29-34
    • /
    • 2001
  • An experimental study was conducted to investigate the effectiveness of transverse reinforcement in reinforced concrete tied columns subjected to monotonically increasing axial compression. Eighteen large-scale columns(260$\times$260$\times$120mm) were fabricated to simulate similarly an actual structural members size. Effects of main variables such as the concrete compressive strength, the tie configuration, the transverse reinforcement ratio, the tie spacing, and the spatting of the concrete cover were studied in this research program.

  • PDF

Strut-and-Tie Model for Shear Strength of R/C Columns (철근콘크리트 기둥의 전단강도 산정을 위한 스트럿 타이 모델)

  • 이수곤;하태훈;홍성걸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.591-596
    • /
    • 1999
  • Current design methods as well as the majority of the previous researches for shear strength of the reinforced concrete are based on empirical method. There is a need to propose the rational models based on analytical approach. This paper presents the modified strut-and-tie model for reinforced concrete columns, under axial compression, shear, and flexural moment, considering tensile strength of concrete. Using this model, the strength and the failure mode of R/C columns are investigated, and the proposed models are compared with test data available in the literature.

  • PDF

Prediction of Shear Stress-Strain Relationship of Reinforced Concrete Columns using Transformation Angle Truss Model (변환각 트러스 모델에 의한 철근콘크리트 기둥의 전단응력-전단변형률 관계 예측)

  • Kim Sang-Woo;Chai Hyee-Dai;Lee Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.361-364
    • /
    • 2004
  • This paper predicts the shear stress-strain relationship of reinforced concrete columns using Transformation Angle Truss Model (TATM) considered bending moment and axial force effects. Nine columns with various shear span-to-depth ratios and axial force ratios were tested to verify the theoretical results obtained from TATM. Shear stress-strain relationship obtained from TATM was agreed well with test results conducted by bis study than other truss models.

  • PDF

Study on seismic performance of SRC special-shaped columns with different loading angles

  • Qu, Pengfei;Liu, Zuqiang;Xue, Jianyang
    • Steel and Composite Structures
    • /
    • v.44 no.6
    • /
    • pp.789-801
    • /
    • 2022
  • In order to study the influence of loading angles on seismic performance of steel reinforced concrete (SRC) special-shaped columns, cyclic loading tests and finite element analysis (FEA) were both carried out. Seven SRC special-shaped columns, including two L-shaped columns, three T-shaped columns and two cross-shaped columns, were tested, and the failure patterns of the columns with different loading angles were obtained. Based on the tests, the FEA models of SRC special-shaped columns with different loading angles were established. According to the simulation results, hysteretic curves and seismic performance indexes, including bearing capacity, ductility, stiffness and energy dissipation capacity, were analyzed in detail. The results showed that the failure patterns were different for the columns with the same section and different loading angles. With the increasing of loading angles, the hysteretic curves became fuller and the bearing capacity and initial stiffness appeared increasing tendency, but the energy dissipation capacity changed insignificantly. When the loading angle changed, the ductility got better with the larger area of steel at the failure side for the unsymmetrical section and near the neutral axis for the symmetrical section, respectively.