• Title/Summary/Keyword: reinforced columns

Search Result 1,121, Processing Time 0.024 seconds

A Research for Identification Method of Sprayed Fire-Resistive Material by Thermal Analysis (열분석을 통한 내화 뿜칠재 일치성분석 연구)

  • Cho, Nam-Wook;Rie, Dong-Ho;Shin, Hyun-Jun
    • Fire Science and Engineering
    • /
    • v.25 no.1
    • /
    • pp.7-12
    • /
    • 2011
  • As recent buildings are getting more high-rise and larger, steel structures, not a reinforced concrete structure, for columns and beams among the main structural members in a building are being widely used. Steels used for the main members of a building are constructed with a fire-resistive structure by applying them with fire-resistive coatings. The introduction of a simple test method that can verify the performance of fire-resistive material constructed on a site without conducting a fire-resistant test(real scale fire test) is needed and this study derived a site analysis method possible to make a rapid and scientific analysis through the analysis of components (instrumental analysis) concerning tire-resistive materials. the possibility of application of it in analyzing congruence over site construction materials by recognizing it as a standard material after securing an inherent fingerprint area of tire-resistive materials of which performance was verified in the concrete through thermal analysis was proved through experiments. This research result can be minimize of casualties, who is harmed to building collapse according to structures fire.

Influence of bi-directional seismic pounding on the inelastic demand distribution of three adjacent multi-storey R/C buildings

  • Skrekas, Paschalis;Sextos, Anastasios;Giaralis, Agathoklis
    • Earthquakes and Structures
    • /
    • v.6 no.1
    • /
    • pp.71-87
    • /
    • 2014
  • Interaction between closely-spaced buildings subject to earthquake induced strong ground motions, termed in the literature as "seismic pounding", occurs commonly during major seismic events in contemporary congested urban environments. Seismic pounding is not taken into account by current codes of practice and is rarely considered in practice at the design stage of new buildings constructed "in contact" with existing ones. Thus far, limited research work has been devoted to quantify the influence of slab-to-slab pounding on the inelastic seismic demands at critical locations of structural members in adjacent structures that are not aligned in series. In this respect, this paper considers a typical case study of a "new" reinforced concrete (R/C) EC8-compliant, torsionally sensitive, 7-story corner building constructed within a block, in bi-lateral contact with two existing R/C 5-story structures with same height floors. A non-linear local plasticity numerical model is developed and a series of non-linear time-history analyses is undertaken considering the corner building "in isolation" from the existing ones (no-pounding case), and in combination with the existing ones (pounding case). Numerical results are reported in terms of averages of ratios of peak inelastic rotation demands at all structural elements (beams, columns, shear walls) at each storey. It is shown that seismic pounding reduces on average the inelastic demands of the structural members at the lower floors of the 7-story building. However, the discrepancy in structural response of the entire block due to torsion-induced, bi-directionally seismic pounding is substantial as a result of the complex nonlinear dynamics of the coupled building block system.

Behavior of Column-Foundation Joint under Vehicle Impact (차량 충돌에 의한 기둥의 콘크리트 기초 접합부 거동 평가)

  • Kang, Hyun-Goo;Kim, Jin-Koo
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.393-400
    • /
    • 2014
  • Structures are often subject to vehicle collision which can be accidental or terrorist attack. Previous research shows that the damage in major columns may result in progressive collapse of a whole building. This study investigates the performance of a steel column standing on a reinforced concrete footing subjected to a vehicle collision. The size and the axial load of the steel column are determined based on the assumption that it is the first story corner column in a typical three-story building with six meter span length. The finite element model of a eight-ton single unit truck provided by the NCAC (National Crash Analysis Center) is used in the numerical analysis. The finite element analysis is performed using the LS-DYNA, and the results show that the behavior of the column subjected to car impact depends largely on the column-foundation connection detail.

The Effect of Reinforcing Soil Shear Strength by a Root System Developed from Direct Sticking of Salix gracilistyla Miq (삽목에 의한 갯버들 근계의 토양전단강도 보강효과)

  • 이춘석;임승빈
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.5
    • /
    • pp.1-10
    • /
    • 2003
  • The purpose of this study was to verify the shore margin protection effect of a root system developed from direct sticking of Salix gracilistyla Miq., focusing on the reinforcement of soil shear strength. The materials were 20cm long sticks whose average diameter and weight were 7.52mm and 14.58g respectively, and sandy loam(Sand 60.36%, Silt 28%, Clay 11.64%), whose maximum dry weight(${\gamma}$$_{dmax}$) was 1.59gf/㎤ at the water ratio( $W_{opt}$) 13.8%. The direct shearing test(KS F 2343) was applied to cylindric columms(diameter 132mm) of pure soil and two years old root reinforced soil. At each condition of vertical stress, 10N/$ extrm{cm}^2$, 14.41N/$\textrm{cm}^2$ and 18.82 N/$\textrm{cm}^2$, five soil+root columns were sheared. After shear tests, the root area ratio and soil moisture on the shear plane were measured. The results of this research were as follows: 1. The average of root area ratio was 1.86% and the soil moisture 14.67%. 2. Two years old root system was found to increase the soil shear strength of pure soil in terms of Cohesion(C) and Inner friction Angle($\phi$) as follows. 3. The relationship between root area ratio and the increased shear strength can be presented with the following equation, $\Delta$S ≒ 0.33ㆍ TrㆍAs/A $\Delta$S : Increased Shear Strength Tr : Average Tension Strength of Root, Ar/A : Root Area Ratioioage Tension Strength of Root, Ar/A : Root Area Ratio

Empirical Prediction for the Compressive Strength and Strain of Concrete Confined with FRP Wrap (FRP로 보강된 콘크리트의 강도 및 변형률 예측)

  • Lee, Dae-Hyoung;Kim, Young-Sub;Chung, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.253-263
    • /
    • 2007
  • Previous researches showed that confined concrete with Fiber-Reinforced Plastic (FRP) sheets significantly improves the strength and ductility of concrete compared with unconfined concrete. However, the retrofit design of concrete with FRP materials requires an accurate estimate of the performance enhancement due to the confinement mechanism. The object of this research is to predict the compressive strength and strain of concrete confined with FRP wraps. For the purpose of this research, 102 test specimens were fabricated and loaded statically under uniaxial compression. Axial load, axial and lateral strains were investigated to predict the ultimate stress and strain. Also, to achieve reliability of proposed strength and strain models for FRP-confined concrete, another series of uniaxial compression test results were used. This paper presents strength and strain models for FRP-confined concrete. The proposed models to estimate the ultimate stresses and failure strains produce satisfactory predictions as compared to current design equations. In conclusion, it is proposed that the modified stress-strain model of concrete cylinders could be effectively used for the repair and retrofit of concrete columns.

Compressive and flexural behaviors of ultra-high strength concrete encased steel members

  • Du, Yong;Xiong, Ming-Xiang;Zhu, Jian;Liew, J.Y. Richard
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.849-864
    • /
    • 2019
  • One way to achieve sustainable construction is to reduce concrete consumption by use of more sustainable and higher strength concrete. Modern building codes do not cover the use of ultra-high strength concrete (UHSC) in the design of composite structures. Against such background, this paper investigates experimentally the mechanical properties of steel fibre-reinforced UHSC and then the structural behaviors of UHSC encased steel (CES) members under both concentric and eccentric compressions as well as pure bending. The effects of steel-fibre dosage and spacing of stirrups were studied, and the applicability of Eurocode 4 design approach was checked. The test results revealed that the strength of steel stirrups could not be fully utilized to provide confinement to the UHSC. The bond strength between UHSC and steel section was improved by adding the steel fibres into the UHSC. Reducing the spacing of stirrups or increasing the dosage of steel fibres was beneficial to prevent premature spalling of the concrete cover thus mobilize the steel section strength to achieve higher compressive capacity. Closer spacing of stirrups and adding 0.5% steel fibres in UHSC enhanced the post-peak ductility of CES columns. It is concluded that the code-specified reduction factors applied to the concrete strength and moment resistance can account for the loss of load capacity due to the premature spalling of concrete cover and partial yielding of the encased steel section.

Seismic Response of a High-Rise RC Bearing-Wall Structure with Irregularities of Weak Story and Torsion at Bottom Stories (저층부에 약층과 비틀림 비정형성을 가진 고층 비정형 RC벽식 구조물의 지진응답)

  • 이한선;고동우
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.81-91
    • /
    • 2003
  • Recently, many high-rise reinforced concrete(RC) bearing-wall structures of multiple uses have been constructed, which have the irregularities of weak(or soft) story and torsion at the lower stories simultaneously. The study stated herein was performed to investigate seismic performance of such a high-rise RC structure through a series of shaking table tests of a 1: 12 model. Based on the observations of the test results, the conclusions are drawn as follows: 1) Accidental torsion due to the uncertainty on the properties of structure can be reasonably predicted by using the dynamic analysis than by using lateral force procedure. 2) The mode coupled by translation and torsion induced the overturning moments not only in the direction of excitations but also in the perpendicular direction: The axial forces in columns due to this transverse overturning moment cannot be adequately predicted using the existing mode analysis technique, and 3) the hysteretic curve and the strength diagram between base shear and torque(BST) clearly reveal the predominant mode of vibrations and the failure mode.

Shake-table study of plaster effects on the behavior of masonry-infilled steel frames

  • Baloevic, Goran;Radnic, Jure;Grgic, Nikola;Matesan, Domagoj
    • Steel and Composite Structures
    • /
    • v.23 no.2
    • /
    • pp.195-204
    • /
    • 2017
  • The effects of plaster on the behavior of single-story single-bay masonry-infilled steel frames under in-plane base accelerations have been experimentally investigated by a shake-table. Tested structures were made in a 1/3 scale, with realistic material properties and construction methods. Steel frames with high and low flexural rigidity of beams and columns were considered. Each type of frame was tested with three variants of masonry: (i) non-plastered masonry; (ii) masonry infill with conventional plaster on both sides; and (iii) masonry infill with a polyvinyl chloride (PVC) net reinforced plaster on both sides. Masonry bricks were made of lightweight cellular concrete. Each frame was firstly successively exposed to horizontal base accelerations of an artificial accelerogram, and afterwards, to horizontal base accelerations of a real earthquake. Characteristic displacements, strains and cracks in the masonry were established for each applied excitation. It has been concluded that plaster strengthens the infill and prevents damages in it, which results in more favorable behavior and increased bearing capacity of plastered masonry-infilled frames compared to non-plastered masonry-infilled frames. The load-bearing contribution of the adopted PVC net in the plaster was not noticeable for the tested specimens, probably due to relative small cross section area of fibers in the net. Behavior of masonry-infilled steel frames significantly depends on frame stiffness. Strong frames have smaller displacements than weak frames, which reduces deformations and damages of an infill.

Seismic Rehabilitation of Nonductile Reidorced Concrete Gravity Frame (비연성 철근 콘크리트 중력 프레임에 의한 지진 보강)

  • Dong Choon Choi;Javeed A. Munsh;Kwang W. Kim
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.5
    • /
    • pp.116-123
    • /
    • 2001
  • This paper represents results of an effort to seismically rehabilitate a 12-story nonductile reinforced concrete frame building. The frame located in the most severe seismic area, zone 4, is assumed to be designed and detailed for gravity load requirements only. Both pushover and nonlinear time-history analyses are carried out to determine strength, deformation capacity and the vulnerability of the building. The analysis indicates a drift concentration at the $1^{st}$ floor level due to inadequate strength and ductility capacity of the ground floor columns. The capacity curve of the structure, when superimposed on the average demand response spectrum for the ensemble of scaled earthquakes indicates that the structure is extremely weak and requires a major retrofit. The retrofit of the building is attempted using viscoelastic (VE) dampers. The dampers at each floor level are sized in order to reduce the elastic story drift ratios to within 1%. It is found that this requires substantially large dampers that are not practically feasible. With practical size dampers, the analyses of the viscoelastically damped building indicates that the damper sizes provided are not sufficient enough to remove the biased response and drift concentration of the building. The results indicate that VE-dampers alone are not sufficient to rehabilitate such a concrete frame. Concrete buildings, in general, being stiffer require larger dampers. The second rehabilitation strategy uses concrete shearwalls. Shearwalls increased stiffness and strength of the building, which resulted in reducing the drift significantly. The effectiveness of VE-dampers in conjunction with stiff shearwalls was also studied. Considering the economy and effectiveness, it is concluded that shearwalls were the most feasible solution for seismic rehabilitation of such buildings.

  • PDF

Capacity of RC Concrete Column with Holes (Rc 유공 콘크리트 기둥의 내력에 관한 실험적 연구)

  • Son, Ki-Sang
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.1 s.73
    • /
    • pp.92-95
    • /
    • 2006
  • This study is to find out how column with hole is behaved, compared to the normal one without hole. There might be existing buildings to make holes in the reinforced concrete column. Columns are made with commercially used compressive strength $240kg/cm^{2}$, air amount 5.0%, using re-bar of diameter D13 and D10 having yielding stress $4,000kg/cm^{2}$. The specimen were cured with temperature of $21{\pm}3^{\circ}C$. All specimens of five variables and all holes are geometrically considered and configurated. D3, D5 mean diameter 3cm and 5cm respectively. H1, H2 are the number of holes. Compressive pressure was forced in accordance with KS, following $0.6{\pm}0.4N/mm^{2}$ speed. Main re-bar's were strained with almost same shape through all the specimens. Hole diameter 5cm-having specimen showed cracking around hole. strains of back and front gauges of the specimen were showed similarly. Specimen having two holes in left and right from longitudinally axis resisted 7% less than the one having hole centrically from longitudinal axis. One hole having specimen with diameter 5cm resisted only 3% less than in case of 3cm diameter hole. Hole having in left and right from longitudinal axis will be less resistant than the case longitudinally arranged. Diameter 3cm hole showed less 10% capacity than normal one without hole. Capacity loss difference between diameter 3cm and 5cm showed almost none in case that they are arranged longitudinally.