• Title/Summary/Keyword: regulatory mutant

Search Result 158, Processing Time 0.028 seconds

Regulatory Effects of Gamisamul-tang on Atopic Dermatitis Induced in the NC/Nga Mice

  • Yang, Sun-Sim;NamGung, Uk;Kim, Dong-Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.4
    • /
    • pp.1036-1043
    • /
    • 2006
  • The present study was conducted to investigate the effect of Gamisamul-tang (GSMT) on atopic dermatitis (AD). AD was induced in NC/Nga mutant mice by DNCB treatment. GSMT administration reduced levels of skin severity scores. Serum levels of IgE, IgG, IgM, and inflammatory cytokines including IL-4, IL-4 and 1L-13 were significantly decreased by GSMT treatment. Levels of mRNA's encoding IL-4, IL-6, IL-13, $TNF-{\alpha}$, and $interferon-{\gamma}$ in the dermal tissue and draining lymph node (DLN) by real time RT-PCR analysis showed decrease by GSMT testament. Moreover, the number of CD4+ and CD8+ cells was significantly decreased in the spleen and DLN tissues. Histological examination showed that infiltration levels of immune cells in ear, skin, and DLN of AD-induced NC/Nga mice were much improved by GSMT treatment. The present data suggest that GSMT may play an important role in recovering AD symptoms by regulating immune reactivity.

Investigation of genomic integration of GX-12, a new anti-HIV DNA vaccine, into host cellular DNA following intramuscular injection in rats

  • Kang, Kyung-Koo;Park, Min-Seul;Ahn, Jun-Kook;Baik, Dae-Hyun;Lee, Dong-Sup;Park, Jae-Hun;Ahn, Byoung-Ok;Kim, Won-Bae
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.11b
    • /
    • pp.199-200
    • /
    • 2002
  • GX-12 is a naked DNA vaccine developed by research team of Dong-A Pharmaceutical Company, Green Cross Company and Genexine for the treatment of HIV infection. It consists of four separate plasmids (pGX10-GE HX, pGX10-dpol JR, pGX10-VN/TV JR, pGX10-hIL-12m), which were constructed by inserting the HIV-1 gag-env, pol, regulatory genes and a human IL-12 mutant gene into pGX10 plasmid vectors.(omitted)

  • PDF

Synthetic Regulatory Elements of the Nopaline Synthase Promoter in Higher Plants (고등 식물에서 Nopaline Synthase Promoter의 합성 조절 요소)

  • Kim, Young-Hee
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.4
    • /
    • pp.201-205
    • /
    • 1995
  • The synthetic oligomers called nos right palindrome (RP) element and left palindrome (LP) element were inserted into nos.minimal promoter nos 5'-101 deletion mutant The activity of nos promoter was measured by studying the expression pattern of gene fusion between nos promoter and reporter genes such as chloramphenicol acetyltransferase and $\beta$-glucuconidase. Analysis of transgenic tobacco plane carrying transgene showed that the activity of nos minimal promoter activity was recovered by insertion of synthetic nos RP element. Nos RP element insertion of nos minimal promoter was induced by auxin, dithiothreitol, salicylic acid and methyl jasmonate.

  • PDF

Dephosphorylation of DBC1 by Protein Phosphatase 4 Is Important for p53-Mediated Cellular Functions

  • Lee, Jihye;Adelmant, Guillaume;Marto, Jarrod A.;Lee, Dong-Hyun
    • Molecules and Cells
    • /
    • v.38 no.8
    • /
    • pp.697-704
    • /
    • 2015
  • Deleted in breast cancer-1 (DBC1) contributes to the regulation of cell survival and apoptosis. Recent studies demonstrated that DBC is phosphorylated at Thr454 by ATM/ATR kinases in response to DNA damage, which is a critical event for p53 activation and apoptosis. However, how DBC1 phosphorylation is regulated has not been studied. Here we show that protein phosphatase 4 (PP4) dephosphorylates DBC1, regulating its role in DNA damage response. PP4R2, a regulatory subunit of PP4, mediates the interaction between DBC1 and PP4C, a catalytic subunit. PP4C efficiently dephosphorylates pThr454 on DBC1 in vitro, and the depletion of PP4C/PP4R2 in cells alters the kinetics of DBC1 phosphorylation and p53 activation, and increases apoptosis in response to DNA damage, which are compatible with the expression of the phosphomimetic DBC-1 mutant (T454E). These suggest that the PP4-mediated dephosphorylation of DBC1 is necessary for efficient damage responses in cells.

Mutation Hotspots in the β-Catenin Gene: Lessons from the Human Cancer Genome Databases

  • Kim, Sewoon;Jeong, Sunjoo
    • Molecules and Cells
    • /
    • v.42 no.1
    • /
    • pp.8-16
    • /
    • 2019
  • Mutations in the ${\beta}-catenin$ gene (CTNNB1) have been implicated in the pathogenesis of some cancers. The recent development of cancer genome databases has facilitated comprehensive and focused analyses on the mutation status of cancer-related genes. We have used these databases to analyze the CTNNB1 mutations assembled from different tumor types. High incidences of CTNNB1 mutations were detected in endometrial, liver, and colorectal cancers. This finding agrees with the oncogenic role of aberrantly activated ${\beta}-catenin$ in epithelial cells. Elevated frequencies of missense mutations were found in the exon 3 of CTNNB1, which is responsible for encoding the regulatory amino acids at the N-terminal region of the protein. In the case of metastatic colorectal cancers, in-frame deletions were revealed in the region spanning exon 3. Thus, exon 3 of CTNNB1 can be considered to be a mutation hotspot in these cancers. Since the N-terminal region of the ${\beta}-catenin$ protein forms a flexible structure, many questions arise regarding the structural and functional impacts of hotspot mutations. Clinical identification of hotspot mutations could provide the mechanistic basis for an oncogenic role of mutant ${\beta}-catenin$ proteins in cancer cells. Furthermore, a systematic understanding of tumor-driving hotspot mutations could open new avenues for precision oncology.

Comparison of covariance thresholding methods in gene set analysis

  • Park, Sora;Kim, Kipoong;Sun, Hokeun
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.5
    • /
    • pp.591-601
    • /
    • 2022
  • In gene set analysis with microarray expression data, a group of genes such as a gene regulatory pathway and a signaling pathway is often tested if there exists either differentially expressed (DE) or differentially co-expressed (DC) genes between two biological conditions. Recently, a statistical test based on covariance estimation have been proposed in order to identify DC genes. In particular, covariance regularization by hard thresholding indeed improved the power of the test when the proportion of DC genes within a biological pathway is relatively small. In this article, we compare covariance thresholding methods using four different regularization penalties such as lasso, hard, smoothly clipped absolute deviation (SCAD), and minimax concave plus (MCP) penalties. In our extensive simulation studies, we found that both SCAD and MCP thresholding methods can outperform the hard thresholding method when the proportion of DC genes is extremely small and the number of genes in a biological pathway is much greater than a sample size. We also applied four thresholding methods to 3 different microarray gene expression data sets related with mutant p53 transcriptional activity, and epithelium and stroma breast cancer to compare genetic pathways identified by each method.

Recent progress in using Drosophila as a platform for human genetic disease research

  • Wan Hee Yoon
    • Journal of Genetic Medicine
    • /
    • v.20 no.2
    • /
    • pp.39-45
    • /
    • 2023
  • As advanced sequencing technologies continue to uncover an increasing number of variants in genes associated with human genetic diseases, there is a growing demand for systematic approaches to assess the impact of these variants on human development, health, and disease. While in silico analyses have provided valuable insights, it is essential to complement these findings with model organism studies to determine the functional consequences of genetic variants in vivo. Drosophila melanogaster is an excellent genetic model for such functional studies due to its efficient genetic technologies, high gene conservation with humans, accessibility to mutant fly resources, short life cycles, and cost-effectiveness. The traditional GAL4-UAS system, allowing precise control of gene expression through binary regulation, is frequently employed to assess the effects of monoallelic variants. Recombinase medicated cassette exchange or CRISPR-Cas9-mediated GAL4 insertion within coding introns or substitution of gene body with Kozak-Gal4 result in the loss-of-function of the target gene. This GAL4 insertion strategy also enables the expression of reference complementary DNA (cDNA) or cDNA carrying genetic variants under the control of endogenous regulatory cis elements. Furthermore, the CRISPR-Cas9-directed tissue-specific knockout and cDNA rescue system provides the flexibility to investigate candidate variants in a tissue-specific and/or developmental-timing dependent manner. In this review, we will delve into the diverse genetic techniques available in Drosophila and their applications in diagnosing and studying numerous undiagnosed diseases over the past decade.

Identification and functional analysis of COLD-signaling-related genes in Panax ginseng

  • Jeongeui Hong;Hojin Ryu
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.225-231
    • /
    • 2023
  • Cold stress is one of the most vulnerable environmental stresses that affect plant growth and crop yields. With the recent advancements in genetic approaches using Arabidopsis and other model systems, genes involved in cold-stress response have been identified and the key cold signaling factors have been characterized. Exposure to low-temperature stress triggers the activation of a set of genes known as cold regulatory (COR) genes. This activation process plays a crucial role in enhancing the resistance of plants to cold and freezing stress. The inducer of the C-repeatbinding factor (CBF) expression 1-CBF module (ICE1-CBF module) is a key cold signaling pathway regulator that enhances the expression of downstream COR genes; however, this signaling module in Panax ginseng remains elusive. Here, we identified cold-signaling-related genes, PgCBF1, PgCBF3, and PgICE1 and conducted functional genomic analysis with a heterologous system. We confirmed that the overexpression of cold- PgCBF3 in the cbf1/2/3 triple Arabidopsis mutant compensated for the cold stress-induced deficiency of COR15A and salt-stress tolerance. In addition, nuclearlocalized PgICE1 has evolutionarily conserved phosphorylation sites that are modulated by brassinsteroid insensitive 2 (PgBIN2) and sucrose non-fermenting 1 (SNF1)-related protein kinase 3 (PgSnRK3), with which it physically interacted in a yeast two-hybrid assay. Overall, our data reveal that the regulators identified in our study, PgICE1 and PgCBFs, are evolutionarily conserved in the P. ginseng genome and are functionally involved in cold and abiotic stress responses.

Development of the feedback resistant pheAFBR from E. coli and studies on its biochemical characteristics (E. coli 유래 pheA 유전자의 되먹임제어 저항성 돌연변이의 구축과 그 단백질의 생화학적 특성 연구)

  • Cao, Thinh-Phat;Lee, Sang-Hyun;Hong, KwangWon;Lee, Sung Haeng
    • Korean Journal of Microbiology
    • /
    • v.52 no.3
    • /
    • pp.278-285
    • /
    • 2016
  • The bifunctional PheA protein, having chorismate mutase and prephenate dehydratase (CMPD) activities, is one of the key regulatory enzymes in the aromatic amino acid biosynthesis in Escherichia coli, and is negatively regulated by an end-product, phenyalanine. Therefore, PheA protein has been thought as useful for protein engineering to utilize mass production of essential amino acid phenylalanine. To obtain feedback resistant PheA protein against phenylalanine, we mutated by using random mutagenesis, extensively screened, and obtained $pheA^{FBR}$ gene encoding a feedback resistant PheA protein. The mutant PheA protein contains substitution of Leu to Phe at the position of 118, displaying that higher affinity (about $290{\mu}M$) for prephenate in comparison with that (about $850{\mu}M$) of wild type PheA protein. Kinetic analysis showed that the saturation curve of $PheA^{FBR}$ against phenyalanine is hyperbolic rather than that of $PheA^{WT}$, which is sigmoidal, indicating that the L118F mutant enzyme has no cooperative effects in prephenate binding in the presence of phenylalanine. In vitro enzymatic assay showed that the mutant protein exhibited increased activity by above 3.5 folds compared to the wild type enzyme. Moreover, L118F mutant protein appeared insensitive to feedback inhibition with keeping 40% of enzymatic activity even in the presence of 10 mM phenylalanine at which the activity of wild type $PheA^{WT}$ was not observed. The substitution of Leu to Phe in CMPD may induce significant conformational change for this enzyme to acquire feedback resistance to end-product of the pathway by modulating kinetic properties.

Function of Global Regulator CodY in Bacillus thuringiensis BMB171 by Comparative Proteomic Analysis

  • Qi, Mingxia;Mei, Fei;Wang, Hui;Sun, Ming;Wang, Gejiao;Yu, Ziniu;Je, Yeonho;Li, Mingshun
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.2
    • /
    • pp.152-161
    • /
    • 2015
  • CodY is a highly conserved protein in low G+C gram-positive bacteria that regulates genes involved in sporulation and stationary-phase adaptation. Bacillus thuringiensis is a grampositive bacterium that forms spores and parasporal crystals during the stationary phase. To our knowledge, the regulatory mechanism of CodY in B. thuringiensis is unknown. To study the function of CodY protein in B. thuringiensis, BMB171codY- was constructed in a BMB171 strain. A shuttle vector containing the ORF of cry1Ac10 was transformed into BMB171 and BMB171codY-, named BMB171cry1Ac and BMB171codY-cry1Ac, respectively. Some morphological and physiological changes of codY mutant BMB171codY-cry1Ac were observed. A comparative proteomic analysis was conducted for both BMB171codY-cry1Ac and BMB171cry1Ac through two-dimensional gel electrophoresis and MALDI-TOF-MS/MS analysis. The results showed that the proteins regulated by CodY are involved in microbial metabolism, including branched-chain amino acid metabolism, carbohydrate metabolism, fatty acid metabolism, and energy metabolism. Furthermore, we found CodY to be involved in sporulation, biosynthesis of poly-β-hydroxybutyrate, growth, genetic competence, and translation. According to the analysis of differentially expressed proteins, and physiological characterization of the codY mutant, we performed bacterial one-hybrid and electrophoretic mobility shift assay experiments and confirmed the direct regulation of genes by CodY, specifically those involved in metabolism of branched-chain amino acids, ribosomal recycling factor FRR, and the late competence protein ComER. Our data establish the foundation for in-depth study of the regulation of CodY in B. thuringiensis, and also offer a potential biocatalyst for functions of CodY in other bacteria.