• 제목/요약/키워드: regulatory factor

검색결과 749건 처리시간 0.028초

Overview of Innate Immunity in Drosophila

  • Kim, Tae-Il;Kim, Young-Joon
    • BMB Reports
    • /
    • 제38권2호
    • /
    • pp.121-127
    • /
    • 2005
  • Drosophila protects itself from infection by microbial organisms by means of its pivotal defense, the so-called innate immunity system. This is its sole defense as it lacks an adaptive immunity system such as is found in mammals. The strong conservation of innate immunity systems in organisms from Drosophila to mammals, and the ease with which Drosophila can be manipulated genetically, makes this fly a good model system for investigating the mechanisms of virulence of a number of medically important pathogens. Potentially damaging endogenous and/or exogenous challenges sensed by specific receptors initiate signals via the Toll and/or Imd signaling pathways. These in turn activate the transcription factors Dorsal, Dorsal-related immune factor (Dif) and Relish, culminating in transcription of genes involved in the production of antimicrobial peptides, melanization, phagocytosis, and the cytoskeletal rearrangement required for appropriate responses. Clarifying the regulatory interactions between the various pathways involved is very important for understanding the specificity and termination mechanism of the immune response.

Transcriptional regulatory network during development in the olfactory epithelium

  • Im, SeungYeong;Moon, Cheil
    • BMB Reports
    • /
    • 제48권11호
    • /
    • pp.599-608
    • /
    • 2015
  • Regeneration, a process of reconstitution of the entire tissue, occurs throughout life in the olfactory epithelium (OE). Regeneration of OE consists of several stages: proliferation of progenitors, cell fate determination between neuronal and non-neuronal lineages, their differentiation and maturation. How the differentiated cell types that comprise the OE are regenerated, is one of the central questions in olfactory developmental neurobiology. The past decade has witnessed considerable progress regarding the regulation of transcription factors (TFs) involved in the remarkable regenerative potential of OE. Here, we review current state of knowledge of the transcriptional regulatory networks that are powerful modulators of the acquisition and maintenance of developmental stages during regeneration in the OE. Advance in our understanding of regeneration will not only shed light on the basic principles of adult plasticity of cell identity, but may also lead to new approaches for using stem cells and reprogramming after injury or degenerative neurological diseases.

Screening of Transcriptional Regulator of the Draf Proto-oncogene Using the Yeast One-hybrid System

  • Park, So-Young;Park, Na-Hyun;Kwon, Eun-Jeong;Yoo, Mi-Ye
    • Journal of Life Science
    • /
    • 제9권2호
    • /
    • pp.52-56
    • /
    • 1999
  • The Raf, a cytoplasmic serine/thereonine protein kinase, acts as an important mediator of signals involving cell proliferation, differentiation and development. Multiple regulatory elements should participate in the expression of D-raf, Drosophila homolog of human c-raf-1. In order to search regulatory factors involved in the D-raf promoter activation, we accomplished the yeast one-hybrid screening using D-raf promoter region from bp-330 to -309 with respect to the transcription initiation site as bait. After screening, sixteen independent positive clones of ${\beta}$-galactosidase activties were identified and sequenced. Two clones having 94-98% identity with daughterless and one clone having 93% identity with escargot by Blast search among these clones were screened.

Dietary Non-nutritive Factors in Targeting of Regulatory Molecules in Colorectal Cancer: An Update

  • Pandurangan, Ashok Kumar;Esa, Norhaizan Mohd
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권10호
    • /
    • pp.5543-5552
    • /
    • 2013
  • Colorectal cancer (CRC), a complex multi-step process involving progressive disruption of homeostatic mechanisms controlling intestinal epithelial proliferation/inflammation, differentiation, and programmed cell death, is the third most common malignant neoplasm worldwide. A number of promising targets such as inducible nitric acid (iNOS), cyclooxygenase (COX)-2, NF-E2-related factor 2 (Nrf2), $Wnt/{\beta}$-catenin, Notch and apoptotic signaling have been identified by researchers as useful targets to prevent or therapeutically inhibit colon cancer development. In this review article, we aimed to explore the current targets available to eliminate colon cancer with an update of dietary and non-nutritional compounds that could be of potential use for interaction with regulatory molecules to prevent CRC.

Degradation of immunoglobulins, protease inhibitors and interleukin-1 by a secretory proteinase of Acanthamoeba cutellanii

  • Na, Byong-Kuk;Cho, Jung-Hwa;Song, Chul-Yong;Kim, Tong-So
    • Parasites, Hosts and Diseases
    • /
    • 제40권2호
    • /
    • pp.93-99
    • /
    • 2002
  • The effect of a secretory proteinase from the pathogenic amoebae Acanthamoeba castellanii on host's defense-oriented or regulatory proteins such as immunoglobulins, interleukin-1, and protease inhibitors was investigated. The enzyme was found to degrade secretory immunoglobulin A (slgA), IgG, and IgM. It also degraded $interleukin-1{\alpha}$ ($IL-l{\alpha}$) and $IL-l{\beta}$. Its activity was not inhibited by endogenous protease inhibitors, such as ${\alpha}$2-macroglobulin, ${\alpha}l-trypsin$ inhibitor, and ${\alpha}2-antiplasmin$. Furthermore, the enzyme rapidly degraded those endogenous protease inhibitors as well. The degradation of host's defense-oriented or regulatory proteins by the Acanthanoeba proteinase suggested that the enzyme might be an important virulence factor in the pathogenesis of Acanthamoeba infection.

Overriding Photoperiod Sensitivity of Flowering Time by Constitutive Expression of a MADS Box Gene

  • N, Gynheung-A
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1996년도 제10회 식물생명공학심포지움 고등식물 발생생물학의 최근 진보
    • /
    • pp.4-9
    • /
    • 1996
  • The majority of plants sense environmental signals, such as day length or temperature, to select their transition timing from vegetative growth t flowering. Here, we report the identification of a regulatory gene, OsMADS1, that controls the photoperiod sensitivity of flowering time. Constitutive expression of OsMADS1 in a long-day flowering plant, Nicotiana sylvestris, resulted in flowering in both short-day long-day conditions. Similarly, ectopic expression of the gene in a short-day flowering plant, N. tabacum cv. Maryland Mammoth, also induced flowering regardless of the day length. The transition time was dependent on the level of the OsMADS1 transcript in transgenic plants. These suggest that OsMADS1 is a key regulatory factor that determines the transition from shoot apex to floral meristem and that it can be used for controlling flowering time in a variety of plant species.

  • PDF

Regulation of Cytokine Production by Exogenous Nitric oxide in Murine Splenocyte and Peritoneal Macrophage

  • Eun, Jae-Soon;Suh, Yong-Hoon;Kim, Dae-Keun;Jeon, Hoon
    • Archives of Pharmacal Research
    • /
    • 제23권5호
    • /
    • pp.531-534
    • /
    • 2000
  • Nitric oxide (NO), products of activated macrophages, have a great impact on the regulation of cytokine production. The role of NO in non-specific host cells is commonly accepted. On the contrary, its role as an immuno-regulatory molecule is still controversial. In this study, we have investigated the effect of NO on the production of cytokines from murine splenocytes and macrophages. S-nitroso-L-glutathione inhibited the release of both interferone-$\gamma$ and interleukin-2 produced by Th1 cells and tumor necrosis factor-$\alpha$ and interleukin-1$\beta$ produced by macrophages, but did not affect the release of interleukin-4 and interleukin-10 produced by Th2 cells. These results suggest that NO exerts a down-regulatory effect on the secretion of cytokines from Th1 cells and macrophages which are implicated in immune response. Thus, NO may have an important role as an immune-modulatory as well as effector molecule in the immune system.

  • PDF

Add to Cart or Buy It Now? Factors Influencing the Usage Intention of Online Shopping Cart

  • Kim, Namhee;Chun, Sungyong
    • Journal of Information Technology Applications and Management
    • /
    • 제25권2호
    • /
    • pp.117-132
    • /
    • 2018
  • This study examines the reason why consumers try to use the online shopping cart more, and especially analyzes the influence of personal psychological factor such as regulatory focus. Hypotheses are tested with a two-way ANOVA model using experimental data collected from 210 undergraduate students at a business school in South Korea. We found that prevention focused consumers try to use online shopping cart more than promotion focused consumers. It is possible that prevention focused consumers try to consider as many alternatives as possible to ensure safety as they focus on negative results or losses during shopping online. However, we also found out when the buying purpose is utilitarian, promotion focused consumers are not different from the promotion in terms of the usage intention of online shopping carts. Marketing managers can provide different messages customized for their consumers by leading them to use the online shopping cart in a more effective way.

Genetic Architecture of Transcription and Chromatin Regulation

  • Kim, Kwoneel;Bang, Hyoeun;Lee, Kibaick;Choi, Jung Kyoon
    • Genomics & Informatics
    • /
    • 제13권2호
    • /
    • pp.40-44
    • /
    • 2015
  • DNA microarray and next-generation sequencing provide data that can be used for the genetic analysis of multiple quantitative traits such as gene expression levels, transcription factor binding profiles, and epigenetic signatures. In particular, chromatin opening is tightly coupled with gene transcription. To understand how these two processes are genetically regulated and associated with each other, we examined the changes of chromatin accessibility and gene expression in response to genetic variation by means of quantitative trait loci mapping. Regulatory patterns commonly observed in yeast and human across different technical platforms and experimental designs suggest a higher genetic complexity of transcription regulation in contrast to a more robust genetic architecture of chromatin regulation.

A semi-automatic cell type annotation method for single-cell RNA sequencing dataset

  • Kim, Wan;Yoon, Sung Min;Kim, Sangsoo
    • Genomics & Informatics
    • /
    • 제18권3호
    • /
    • pp.26.1-26.6
    • /
    • 2020
  • Single-cell RNA sequencing (scRNA-seq) has been widely applied to provide insights into the cell-by-cell expression difference in a given bulk sample. Accordingly, numerous analysis methods have been developed. As it involves simultaneous analyses of many cell and genes, efficiency of the methods is crucial. The conventional cell type annotation method is laborious and subjective. Here we propose a semi-automatic method that calculates a normalized score for each cell type based on user-supplied cell type-specific marker gene list. The method was applied to a publicly available scRNA-seq data of mouse cardiac non-myocyte cell pool. Annotating the 35 t-stochastic neighbor embedding clusters into 12 cell types was straightforward, and its accuracy was evaluated by constructing co-expression network for each cell type. Gene Ontology analysis was congruent with the annotated cell type and the corollary regulatory network analysis showed upstream transcription factors that have well supported literature evidences. The source code is available as an R script upon request.