• Title/Summary/Keyword: regulatory factor

Search Result 763, Processing Time 0.021 seconds

The Signal Transduction Mechanisms on the Intestinal Mucosa of Rat Following Irradiation (방사선조사후 백서소장점막에서 발생하는 신호전달체계에 관한 연구)

  • Yoo Jeong Hyun;Kim Sung Sook;Lee Kyung Ja;Rhee Chung Sik
    • Radiation Oncology Journal
    • /
    • v.15 no.2
    • /
    • pp.79-95
    • /
    • 1997
  • Purpose : Phospholipase C(PLC) isozymes play significant roles in signal transduction mechanism. $PLC-\gamma$ 1 is one of the key regulatory enzymes in signal transduction for cellular proliferation and differentiation. Ras oncoprotein, EGFR, and PKC are also known to be involved in cell growth. The exact mechanisms of these signal transduction following irradiation, however, were not clearly documented Thus, this study was Planned to determine the biological significance of PLC, ras oncoprotein, EGFR, and PKC in damage and regeneration of rat intestinal mucosa following irradiation. Material and Method : Sixty Sprague-Dawley rats were irradiated to entire body with a single dose of 8Gy. The rats were divided into S groups according to the sacrifice days after irradiation. The expression of PLC, ras oncoprotein, EGFR and PKC in each group were examined by the immunoblotting and immunohistochemistry. The histopathologic findings were observed using H&I stain, and the mitoses for the evidence of regeneration were counted using the light microscopy & PCNA kit. The Phosphoinositide(PI) hydrolyzing activity assay was also done for the indirect evaluation of $PLC-\gamma$ 1 activity. Results: In the immunohistochemistry , the expression of $PLC-{\beta}$ was negative for all grøups. The expression of $PLC-{\gamma}1$ was highest in the group III followed by group II in the proliferative zone of mucosa. The expression of $PKC-{\delta}1$ was strongly positive in group 1 followed by group II in the damaged surface epithelium. The above findings were also confirttled in the immunoblotting study. In the immunoblotting study, the expressions of $PLC-{\beta}$, $PLC-{\gamma}1$, and $PKC-{\delta}1$ were the same as the results of immunohis-tochemistry. The expression of ras oncoprctein was weakly positive in groups II, III and IV. The of EGFR was the highest in the group II, III, follwed by group IV and the expression of PKC was weakly positive in the group II and III. Conclusion: $PLC-{\gamma}1$ mediated signal transduction including ras oncoprotein, EGFR, and PKC play a significant role in mucosal regeneration after irradiation. $PLC-{\delta}1$ mediated signal transduction might have an important role in mucosal damage after irradiation. Further studies will be necessary to confirm the signal transduction mediating the $PKC-{\delta}1$.

  • PDF

Effects of insulin and IGF on growth and functional differentiation in primary cultured rabbit kidney proximal tubule cells - Effects of IGF-I on Na+ uptake - (초대배양된 토끼 신장 근위세뇨관세포의 성장과 기능분화에 대한 insulin과 IGF의 효과 - Na+ uptake에 대한 IGF-I의 효과 -)

  • Han, Ho-jae;Park, Kwon-moo;Lee, Jang-hern;Yang, IL-suk
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.4
    • /
    • pp.783-794
    • /
    • 1996
  • It has been suggested that ion transport systems are intimately involved in mediating the effects of growth regulatory factors on the growth of a number of different types of animal cells in vivo. The functional importance of the apical membrane $Na^+/H^+$ antiporter in the renal proximal tubule is evidenced by estimates that this transporter mediates the reabsorption of approximately one third of the filtered load of sodium and the bulk of the secretion of hydrogen ions. This study was designed to investigate the pathway utilized by IGF-I in regulating sodium transport in primary cultured renal proximal tubule cells. Results were as follows : 1. $Na^+$ was observed to accumulate in the primary cells as a function of time. Raising the concentration of extracellular NaCl induced an decrease in $Na^+$ uptake compared with control cells in a dose dependent manner. The rate of $Na^+$ uptake into the primary cells was about two times higher in the absence of NaCl($40.11{\pm}1.76pmole\;Na^+/mg\;protein/min$) than in the presence of 140mM NaCl($17.82{\pm}0.94pmole\;Na^+/mg\;protein/min$) at the 30 minute uptake. 2. $Na^+$ uptake was inhibited by IAA($1{\times}10^{-4}M$) or valinomycin($5{\times}10^{-6}M$) treatment($50.51{\pm}4.04$ and $57.65{\pm}2.27$ of that of control, respectively). $Na^+$ uptake by the primary proximal tubule cells was significantly increased by ouabain($5{\times}10^{-5}M$) treatment($140.23{\pm}3.37%$ of that of control). When actinomycin D($1{\times}10^{-7}M$) or cycloheximide($4{\times}10^{-5}M$) was applied, $Na^+$ uptake was decreased to $90.21{\pm}2.39%$ or $89.64{\pm}3.69%$ of control in IGF-I($1{\times}10^{-5}M$) treated cells, respectively. 3. Extracellular cAMP decreased $Na^+$ uptake in a dose-dependent manner($10^{-8}-10^{-4}M$). IBMX($5{\times}10^{-5}M$) also inhibited $Na^+$ uptake. Treatment of cells with pertussis toxin(50pg/ml) or cholera toxin($1{\mu}g/ml$) inhibited $Na^+$ uptake. Extracellular PMA decreased $Na^+$ uptake in a dose-dependent manner(1-100ng/ml). 100 ng/ml PMA concentration significantly inhibited $Na^+$ uptake in IGF-I treated cells. However, staurosporine($1{\times}10^{-7}M$) had no effect on $Na^+$ uptake. When PMA and staurosporine were added together, the inhibition of $Na^+$ uptake was not observed. In conclusion, sodium uptake in primary cultured rabbit renal proximal tubule cells was dependent on membrane potentials and intracellular energy levels. IGF-I stimulates sodium uptake through mechanisms that involve some degree of de novo protein and/or RNA synthesis, and cAMP and/or PKC pathway mediating the action mechanisms of IGF-I.

  • PDF

Correlation of p53 Protein Overexpression, Gene Mutation with Prognosis in Resected Non-Small Cell Lung Cancer(NSCLC) Patients (비소세포폐암에서 p53유전자의 구조적 이상 및 단백질 발현이 예후에 미치는 영향)

  • Lee, Y.H.;Shin, D.H.;Kim, J.H.;Lim, H.Y.;Chung, K.Y.;Yang, W.I.;Kim, S.K.;Chang, J.;Roh, J.K.;Kim, S.K.;Lee, W.Y.;Kim, B.S.;Kim, B.S.
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.4
    • /
    • pp.339-353
    • /
    • 1994
  • Background : The p53 gene codes for a DNA-binding nuclear phosphoprotein that appears to inhibit the progression of cells from the G1 to the S phase of the cell cycle. Mutations of the p53 gene are common in a wide variety of human cancers, including lung cancer. In lung cancers, point mutations of the p53 gene have been found in all histological types including approximately 45% of resected NSCLC and even more frequently in SCLC specimens. Mutant forms of the p53 protein have transforming activity and interfere with the cell-cycle regulatory function of the wild-type protein. The majority of p53 gene mutations produce proteins with altered conformation and prolonged half life; these mutant proteins accumulate in the cell nucleus and can be detected by immunohistochemical staining. But protein overexpression has been reported in the absence of mutation. p53 protein overexpression or gene mutation is reported poor prognostic factor in breast cancer, but in lung cancer, its prognostic significance is controversial. Method : We investigated the p53 abnormalities by nucleotide sequencing, polymerase chain reaction-single strand conformation polymorphism(PCR-SSCP), and immunohistochemical staining. We correlated these results with each other and survival in 75 patients with NSCLC resected with curative intent. Overexpression of the p53 protein was studied immunohistochemically in archival paraffin- embedded tumor samples using the D07(Novocastra, U.K.) antibody. Overexpression of p53 protein was defined by the nuclear staining of greater than 25% immunopositive cells in tumors. Detection of p53 gene mutation was done by PCR-SSCP and nucleotide sequencing from the exon 5-9 of p53 gene. Result: 1) Of the 75 patients, 36%(27/75) showed p53 overexpression by immunohistochemical stain. There was no survival difference between positive and negative p53 immunostaining(overall median survival of 26 months, disease free median survival of 13 months in both groups). 2) By PCR-SSCP, 27.6%(16/58) of the patients showed mobility shift. There was no significant difference in survival according to mobility shift(overall median survival of 27 in patients without mobility shift vs 20 months in patients with mobility shift, disease free median survival of 8 months vs 10 months respectively). 3) Nucleotide sequence was analysed from 29 patients, and 34.5%(10/29) had mutant p53 sequence. Patients with the presence of gene mutations showed tendency to shortened survival compared with the patients with no mutation(overall median survival of 22 vs 27 months, disease free median survival of 10 vs 20 months), but there was no statistical significance. 4) The sensitivity and specificity of immunostain based on PCR-SSCP was 67.0%, 74.0%, and that of the PCR-SSCP based on the nucleotide sequencing was 91.8%, 96.2% respectively. The concordance rate between the immunostain and PCR-SSCP was 62.5%, and the rate between the PCR-SSCP and nucleotide sequencing was 95.3%. Conclusion : In terms of detection of p53 gene mutation, PCR-SSCP was superior to immunostaining. p53 gene abnormalities either overexpression or mutation were not a significant prognostic factor in NSCLC patients resected with curative intent. However, patients with the mutated p53 gene showed the trends of early relapse.

  • PDF