• Title/Summary/Keyword: regulatory factor

Search Result 750, Processing Time 0.024 seconds

Anti-oxidant and anti-inflammatory effects of Salix Koreensis Andersson in DC. leaf methanol extract in vitro models

  • Kim, Eun-Ji;Kim, Mi Hye
    • CELLMED
    • /
    • v.6 no.4
    • /
    • pp.28.1-28.6
    • /
    • 2016
  • Oxidative rancidity in foods causes undesirable changes in nutritive value, aroma, flavor, and color. Salix Koreensis Andersson in DC. (SK) has anti-oxidative and anti-inflammatory effects and is traditionally used to treat neuralgia, edema, pain, and inflammatory diseases. However, the regulatory effects of SK on oxidative and inflammatory reactions have not been elucidated. In this context, we scientifically validated the anti-oxidative and anti-inflammatory activities of SK leaf (SKL). The methanol extract of SKL was evaluated for in vitro anti-oxidative activities. SKL showed increased superoxide dismutase (SOD)-like activity and 1, 1-diphenyl-2-picrylhydrazyl radical scavenging activity. The in vitro anti-oxidant and anti-inflammatory activities of SKL were also investigated in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. LPS resulted in decreased SOD activities compared with the unstimulated cells, but SKL significantly increased SOD activities reduced by LPS. In addition, LPS-induced nitric oxide, tumor necrosis factor-${\alpha}$, and interleukin-6 productions were significantly and dose-dependently reduced by SKL in RAW264.7 macrophages without inducing cytotoxicity. In conclusion, these results indicate that SKL will be able to be effectively used as a food additive with anti-oxidative and anti-inflammatory effects.

High fat diet confers vascular hyper-contractility against angiotensin II through upregulation of MLCK and CPI-17

  • Kim, Jee In
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.1
    • /
    • pp.99-106
    • /
    • 2017
  • Obesity is a critical risk factor for the hypertension. Although angiotensin II (Ang II) in obese individuals is known to be upregulated in obesity-induced hypertension, direct evidence that explains the underlying mechanism for increased vascular tone and consequent increase in blood pressure (BP) is largely unknown. The purpose of this study is to investigate the novel mechanism underlying Ang II-induced hyper-contractility and hypertension in obese rats. Eight-week old male Sprague-Dawley rats were fed with 60% fat diet or normal diet for 4 months. Body weight, plasma lipid profile, plasma Ang II level, BP, Ang II-induced vascular contraction, and expression of regulatory proteins modulating vascular contraction with/without Ang II stimulation were measured. As a result, high fat diet (HFD) accelerated age-dependent body weight gaining along with increased plasma Ang II concentration. It also increased BP and Ang II-induced aortic contraction. Basal expression of p-CPI-17 and myosin light chain (MLC) kinase was increased by HFD along with increased phosphorylation of MLC. Ang II-induced phosphorylation of CPI-17 and MLC were also higher in HFD group than control group. In conclusion HFD-induced hypertension is through at least in part by increased vascular contractility via increased expression and activation of contractile proteins and subsequent MLC phosphorylation induced by increased Ang II.

Effects of the m-VALS on the Mobile Shopping Acceptance Incentive and Consistent Use Intention

  • Yang, Hoe-Chang;Kim, An-Sik
    • Journal of Distribution Science
    • /
    • v.12 no.10
    • /
    • pp.19-28
    • /
    • 2014
  • Purpose - This study intends to verify if the m-VALS developed to help the establishment of the mobile shopping vitalization strategy is classified as the same type as it is in the adult customers. Research design, data, and methodology - A total of 84 valid copies of the questionnaire were used. Factor analysis was performed first, as well as performing reliability and validity analysis after deducing the factors, and the simple regression analysis and multiple regression analysis techniques were employed. Results - The m-VALS needs verification through various groups and the delicateness of the questions needs to be ensured; further, for all the lifestyle types in relation to the mobile shopping acceptance incentives, all the remaining lifestyle types excepting the sociability-oriented type had a positive effect on consistent use intention. Conclusion - It is implied that the charm of the mobile shopping App should be enhanced and that, when establishing the mobile shopping mall with which the positive frequent and interactive communication is possible along with the opportunity to be together, the positive achievement can be obtained.

Preclinical Efficacy and Mechanisms of Mesenchymal Stem Cells in Animal Models of Autoimmune Diseases

  • Lee, Hong Kyung;Lim, Sang Hee;Chung, In Sung;Park, Yunsoo;Park, Mi Jeong;Kim, Ju Young;Kim, Yong Guk;Hong, Jin Tae;Kim, Youngsoo;Han, Sang-Bae
    • IMMUNE NETWORK
    • /
    • v.14 no.2
    • /
    • pp.81-88
    • /
    • 2014
  • Mesenchymal stem cells (MSCs) are present in diverse tissues and organs, including bone marrow, umbilical cord, adipose tissue, and placenta. MSCs can expand easily in vitro and have regenerative stem cell properties and potent immunoregulatory activity. They inhibit the functions of dendritic cells, B cells, and T cells, but enhance those of regulatory T cells by producing immunoregulatory molecules such as transforming growth factor-${\beta}$, hepatic growth factors, prostaglandin $E_2$, interleukin-10, indolamine 2,3-dioxygenase, nitric oxide, heme oxygenase-1, and human leukocyte antigen-G. These properties make MSCs promising therapeutic candidates for the treatment of autoimmune diseases. Here, we review the preclinical studies of MSCs in animal models for systemic lupus erythematosus, rheumatoid arthritis, Crohn's disease, and experimental autoimmune encephalomyelitis, and summarize the underlying immunoregulatory mechanisms.

Secondary structure of the Irf7 5'-UTR, analyzed using SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension)

  • Kim, Yun-Mi;Choi, Won-Young;Oh, Chang-Mok;Han, Gyoon-Hee;Kim, Young-Joon
    • BMB Reports
    • /
    • v.47 no.10
    • /
    • pp.558-562
    • /
    • 2014
  • OASL1 is a member of the 2'-5'-oligoadenylate synthetase (OAS) family and promotes viral clearance by activating RNase L. OASL1 interacts with the 5'-untranslated region (UTR) of interferon regulatory factor 7 (Irf7) and inhibits its translation. To identify the secondary structure required for OASL1 binding, we examined the 5'-UTR of the Irf7 transcript using "selective 2'-hydroxyl acylation analyzed by primer extension" (SHAPE). SHAPE takes advantage of the selective acylation of residues in single-stranded regions by 1-methyl-7-nitroisatoic anhydride (1M7). We found five major acylation sites located in, or next to, predicted single-stranded regions of the Irf7 5'-UTR. These results demonstrate the involvement of the stem structure of the Irf7 5'-UTR in the regulation of Irf7 translation, mediated by OASL1.

Endocytic Regulation of EGFR Signaling

  • Chung, Byung-Min
    • Interdisciplinary Bio Central
    • /
    • v.4 no.2
    • /
    • pp.3.1-3.7
    • /
    • 2012
  • Epidermal growth factor receptor (EGFR) is a member of the ErbB family (ErbB1-4) of receptor tyrosine kinases (RTKs). EGFR controls numerous physiological functions, including cell proliferation, migration, differentiation and survival. Importantly, aberrant signaling by EGFR has been linked to human cancers in which EGFR and its various ligands are frequently overexpressed or mutated. EGFR coordinates activation of multiple downstream factors and is subject of various regulatory processes as it mediates biology of the cell it resides in. Therefore, many studies have been devoted to understanding EGFR biology and targeting the protein for the goal of controlling tumor in clinical settings. Endocytic regulation of EGFR offers a promising area for targeting EGFR activity. Upon ligand binding, the activated receptor undergoes endocytosis and becomes degraded in lysosome, thereby terminating the signal. En route to lysosome, the receptor becomes engaged in activating various signaling pathways including PI-3K, MAPK and Src, and endocytosis may offer both spatial and temporal regulation of downstream target activation. Therefore, endocytosis is an important regulator of EGFR signaling, and increasing emphasis is being placed on endocytosis in terms of cancer treatment and understanding of the disease. In this review, EGFR signaling pathway and its intricate regulation by endocytosis will be discussed.

Molecular Cloning of Adipose Tissue-specific Genes by cDNA Microarray

  • Kim, Kee-Hong;Moon, Yang Soo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.12
    • /
    • pp.1837-1841
    • /
    • 2003
  • In an attempt to isolate novel molecules that may play a regulatory role in adipocyte differentiation, we devised an experimental strategy to identify adipose tissue-specific genes by modifying cDNA microarray technique. We used genefilter membranes containing approximately 15,000 rat non-redundant EST clones of which 4,000 EST were representative clones of known genes and 11,000 ESTs were uncharacterized clones. A series of hybridization of genefilter membranes with cDNA probes prepared from various rat tissues and nucleic acids sequence analysis allowed us to identify two adipose-tissue specific genes, adipocyte-specific secretory factor (ADSF) and H-rev107. Verification of tissue-specific expression patterns of these two genes by Northern blot analysis showed that ADSF mRNA is exclusive expressed in adipose tissue and the H-rev107 mRNA is predominantly expressed in adipose tissue. Further analysis of gene expression of ADSF and H-rev107 during 3T3-L1 adipocyte differentiation revealed that the ADSF and H-rev107 gene expression patterns are closely associated with the adipocyte differentiation program, indicating their possible role in the regulation of adipose tissue development. Overall, we demonstrated an application of modified cDNA microarray technique in molecular cloning, resulting in identification of two novel adipose tissue-specific genes. This technique will also be used as a useful tool in identifying novel genes expressed in a tissue-specific manner.

Characteristics of Voltage-Dependent Clacium Uptake and Norepinephrine Release in Hypothalamus of SHR

  • Yi, Sook-Young;Kim, Yun-Tai;Kim, Kyeong-Man;Ko, Kwang-Ho
    • Archives of Pharmacal Research
    • /
    • v.17 no.4
    • /
    • pp.226-230
    • /
    • 1994
  • The characteristics of voltage-dependent ^{45}Calcium$ uptake and norepinephrine release as factors controlling neural activities in the hypothalamus which is an important regulatory site for cardiovascular function wre studied. Two groups of animals : male spontaneously hyperterisive rat (SHR) and age-matched nomotensive wistar rat (NW) were used in this study. Animals at 4, 6 and 16 weeks of age were sacrificed by decapitiation and the hypothalamus was dissected out. Voltage-dependent calcium uptake and norepinephrine release were determined from hypothalamic synaptosomes either in low potassium (5 mM) or high potassium (41 mM) stimulatory conditions by using ^{45}Ca$ isotope and HPLC-ECD techniques. Degrees of voltage-dependent ^{45}Calcium$ uptake and norepinephrine release evoked by calcium uptake in the hypothalamus of prehypertensive phase (4 weeks old) of SHR were significantly smaller than those in NW of the same age. However, in the developmental phase (6 weeks old) and the established phase (16 weeks old) of hyperrtension in SHR, degrees of voltage-dependent ^{45}Calcium$ uptake and norepinephrine release were similar to those of age-matched normotensive wistae eats. These data imply that the deficit in hypothalamic norepinephrine release might be an important underlying factor for the development of hypertension in SHR.

  • PDF

A STUDY ON METHODOLOGY FOR IDENTIFYING CORRELATIONS BETWEEN LERF AND EARLY FATALITY

  • Kang, Kyungmin;Jae, Moosung;Ahn, Kwang-Il
    • Nuclear Engineering and Technology
    • /
    • v.44 no.7
    • /
    • pp.745-754
    • /
    • 2012
  • The correlations between Large Early Release Frequency (LERF) and Early Fatality need to be investigated for risk-informed application and regulation. In Regulatory Guide (RG) -1.174, while there are decision-making criteria using the measures of Core Damage Frequency (CDF) and LERF, there are no specific criteria on LERF. Since there are both huge uncertainties and large costs needed in off-site consequence calculation, a LERF assessment methodology needs to be developed, and its correlation factor needs to be identified, for risk-informed decision-making. A new method for estimating off-site consequence has been presented and performed for assessing health effects caused by radioisotopes released from severe accidents of nuclear power plants in this study. The MACCS2 code is used for validating the source term quantitatively regarding health effects, depending on the release characteristics of radioisotopes during severe accidents. This study developed a method for identifying correlations between LERF and Early Fatality and validates the results of the model using the MACCS2 code. The results of this study may contribute to defining LERF and finding a measure for risk-informed regulations and risk-informed decision-making.

Effects of Light on Disassembly of Chloroplast during Senescence of Detached Leaves in Phaseolus vulgaris

  • Lee Dong-Hee;Hong Jung-Hee;Kim Young-Sang
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.1 no.2
    • /
    • pp.69-80
    • /
    • 1997
  • Effects of light on leaf senescence of Phaseolus vulgaris were investigated by measuring the disassembly of chlorophyll-protein complexes in detached leaves which had been kept in the dark or under light. The loss of chlorophyll accompanied by degradation of chlorophyll-protein complexes. PSI (photosystem I) complex containing LHCI (light harvesting complex of PSI) apoproteins was rapidly decreased after the early stage of dark-induced senescence. RC(reaction center)-Core3 was slightly increased until 4 d and slowly decreased thereafter. As disassembly of LHCII trimer progressed after the late stage of senescence, there was a steady increase in the relative amount of SC(small complex)-2 containing LHCII monomer. On the other hand, white and red light adaptation caused the structural stability of chlorophyll-protein complexes during dark-induced senescence. Particularly, red light was more effective in the retardation of LHCII breakdown than white light, whereas white light was slightly effect in protecting the disassembly of PSI complex compared to red light. These results suggest, therefore, that light may be a regulatory factor for stability of chlorophyll-protein complexes in the senescent leaves.

  • PDF