• Title/Summary/Keyword: regulatory factor

Search Result 750, Processing Time 0.024 seconds

Anti-inflammatory Effects of Phytochemicals Having Michael Addition Acceptors by the Modulation of Toll-like Receptor Signaling Pathways (Michael addition acceptor 그룹을 가지고 있는 phytochemicals의 toll-like receptor 신호전달체계 조절을 통한 항염증 효과)

  • Youn, Hyung-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.5
    • /
    • pp.477-482
    • /
    • 2009
  • Toll-like receptors (TLRs) play a critical role in the induction of innate immune responses that are essential for host defense against invading microbial pathogens. In general, TLRs have two major downstream signaling pathways, namely MyD88- and TRIF-dependent pathways, leading to the activation of nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and interferon regulatory factor 3 (IRF3) and the expression of inflammatory mediators. TLR4 dimerization is required for the activation of downstream signaling pathways and may be one of the first lines of regulation in activating TLR-mediated signaling pathways. In this paper, the molecular targets of curcumin, 6-shogaol, and cinnamaldehyde in TLR signaling pathways will be discussed. Curcumin, 6-shogaol, and cinnamaldehyde with ${\alpha},{\beta}$-unsaturated carbonyl groups inhibit the dimerization of TLR4 induced by lipopolysaccharide, resulting in the downregulation of NF-${\kappa}B$ and IRF3. These results suggest that phytochemicals with the structural motif conferring Michael addition inhibit TLR4 dimerization, suggesting a novel mechanism for the anti-inflammatory activity of phytochemicals.

Study on the Well Scenario of the LILW Disposal Facility in Korea (중·저준위 방사성폐기물 처분시설의 우물 이용 시나리오를 적용한 안전평가 연구에 대한 고찰)

  • Jeong, Mi-Seon;Cheong, Jae-Yeol;Park, Jin Beak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.1
    • /
    • pp.63-72
    • /
    • 2015
  • The low and intermediate-level radioactive waste generated in Korea is disposed of at Wolsong Disposal Facility. For the safety of a disposal facility, it must be assessed by considering some abnormal scenarios including human intrusion as well as those by natural phenomena. The human intrusion scenario is a scenario that an incognizant man of the disposal facility will be occurred by the drilling. In this paper, the well usage scenario was classified into the human intrusion event as the probability of the well drilling is very low during the man's lifecycle and then was assessed by using conservative assumptions. This scenario was assessed using the dilution factor of contaminants released from a disposal facility and then it was introduced the applied methodology in this study. The assessed scenario using this methodology is satisfied the regulatory limits.

Effects of Nursing Student's Academic Failure Tolerance and Academic Self-efficacy on Academic Achievement (간호대학생의 학업실패내성과 학업적 자기효능감이 학업성취도에 미치는 영향)

  • Chung, Su Kyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.12
    • /
    • pp.7160-7169
    • /
    • 2014
  • This study examined the relationship of academic failure tolerance, academic self-efficacy and academic achievement of nursing students. The data was obtained from August 27 to September 17. The participants were 198 students in a university in D city. The data was analyzed using descriptive statistics, Pearson correlation coefficients and multiple regression. A positive correlation was observed between all the variables. The factor that significantly affected academic achievement was academic self-efficacy, which explained 7.5% of the variances. The subdomain of the academic failure tolerance affecting academic achievement was found to be the behavior, which explained 8.0% of variances. The subdomains of academic self-efficacy affecting the academic achievement was the self-regulatory efficacy. This factor explained 15.4% of the variances. This study suggests that it is necessary to enhance the academic failure tolerance and academic self-efficacy for the learning achievement and working performance of nursing students.

TRAIL Suppresses Human Breast Cancer Cell Migration via MADD/CXCR7

  • Wang, Rui;Li, Jin-Cheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.7
    • /
    • pp.2751-2756
    • /
    • 2015
  • Background: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can specifically induce apoptosis limited to various cancer cells, so this reagent is considered a promising medicine for cancer therapy. TRAIL also exerts effects on non-apoptotic signals, relevant to processes such as metastasis, autophagy and proliferation in cancer cells. However, the mechanisms of TRAIL-regulated non-apoptotic signals are unclear. The purpose of this study was to investigate MADD/CXCR7 effects in TRAIL-mediated breast cancer cell migration. Materials and Methods: The ability of MADD/CXCR7 to regulate MVP signaling in TRAIL-mediated breast cancer cells migration was evaluated by transwell migration assay, quantitative RT-PCR, Western blotting and knock down experiments. Results: In this study, we found that treatment with TRAIL resulted in induced expression levels of MADD and CXCR7 in breast cancer cells. Knock down of MADD followed by treatment with TRAIL resulted in increased cell migration compared to either treatment alone. Similarly, through overexpression and knockdown experiments, we demonstrated that CXCR7 also positively regulated TRAIL-inhibited migration. Surprisingly, knock down of MADD lead to inhibition of TRAIL-induced CXCR7 mRNA and protein expression and overexpression of CXCR7 lead to the reduction of MADD expression, indicating that MADD is an upstream regulatory factor of TRAIL-triggered CXCR7 production and a negative feedback mechanism between MADD and CXCR7. Furthermore, we showed that CXCR7 is involved in MADD-inhibited migration in breast cancer cells. Conclusions: Our work defined a novel signaling pathway implicated in the control of breast cancer migration.

Identification and Characterization of a Putative Baculoviral Transcriptional Factor IE-1 from Choristoneura fumiferana Granulovirus

  • Rashidan, Kianoush Khajeh;Nassoury, Nasha;Merzouki, Abderrazzak;Guertin, Claude
    • BMB Reports
    • /
    • v.35 no.6
    • /
    • pp.553-561
    • /
    • 2002
  • A gene that encodes a protein homologue to baculoviral IE-1 was identified and sequenced in the genome of the Choristoneura fumiferana granulovirus (ChfuGV). The gene has an 1278 nucleotide (nt) open-reading frame (ORF) that encodes 426 amino acids with an estimated molecular weight of 50.33 kDa. At the nucleotide level, several cis-acting regulatory elements were detected within the promoter region of the ie-1 gene of ChfuGV along with other studied granuloviruses (GVs). Two putative CCAAT elements were detected within the noncoding leader region of this gene; one was located on the opposite strand at -92 and the other at -420 nt from the putative start triplet. Two baculoviral late promoter motifs (TAAG) were also detected within the promoter region of the ie-1 gene of ChfuGV. A single polyadenylation signal, AATAAA, was located 18nt downstream of the putative translational stop codon of ie-1 from ChfuGV. At the protein level, the amino acid sequence data that was derived from the nucleotide sequence in ChfuGV IE-1 was compared to those of the Cydia pomonella granulovirus (CpGV), Xestia c-nigrum granulovirus (XcGV) and Plutella xylostella granulovirus (PxGV). The C-terminal regions of the granuloviral IE-1 sequences appeared to be more conserved when compared to the N-terminal regions. A domain, similar to the basic helix-loop-helix like (bHLH-like) domain in NPVs, was detected at the C-terminal region of IE-1 from ChfuGV (residues 387 to 414). A phylogenetic tree for baculoviral IE-1 was constructed using a maximum parsimony analysis. A phylogenetic estimation demonstrates that ChfuGV IE-1 is most closely related to that of CpGV.

Suppression of the TRIF-dependent signaling pathway of toll-like receptors by (E)-isopropyl 4-oxo-4-(2-oxopyrrolidin-1-yl)-2-butenoate

  • Park, Se-Jeong;Park, Hye-Jeong;Kim, Soo-Jung;Shin, Hwa-Jeong;Min, In-Soon;Koh, Kwang-Oh;Kim, Dae-Young;Youn, Hyung-Sun
    • BMB Reports
    • /
    • v.44 no.7
    • /
    • pp.468-472
    • /
    • 2011
  • Toll-like receptors (TLRs) are pattern recognition receptors that recognize molecular structures derived from microbes and initiate innate immunity. TLRs have two downstream signaling pathways, the MyD88- and TRIF-dependent pathways. Dysregulated activation of TLRs is closely linked to increased risk of many chronic diseases. Previously, we synthesized fumaryl pyrrolidinone, (E)-isopropyl 4-oxo-4-(2-oxopyrrolidin-1-yl)-2-butenoate (IPOP), which contains a fumaric acid isopropyl ester and pyrrolidinone, and demonstrated that it inhibits the activation of nuclear factor kappa B by inhibiting the MyD88-dependent pathway of TLRs. However, the effect of IPOP on the TRIF-dependent pathway remains unknown. Here, we report the effect of IPOP on signal transduction via the TRIF-dependent pathway of TLRs. IPOP inhibited lipopolysaccharide- or polyinosinic-polycytidylic acidinduced interferon regulatory factor 3 activation, as well as interferon-inducible genes such as interferon inducible protein-10. These results suggest that IPOP can modulate the TRIF-dependent signaling pathway of TLRs, leading to decreased inflammatory gene expression.

Plasma Peptidome as a Source of Biomarkers for Diagnosis of Cholangiocarcinoma

  • Kotawong, Kanawut;Thitapakorn, Veerachai;Roytrakul, Sittiruk;Phaonakrop, Narumon;Viyanant, Vithoon;Na-Bangchang, Kesara
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.1163-1168
    • /
    • 2016
  • Cholangiocarcinoma (CCA) is the bile duct cancer which constitutes one of the important public health problems in Thailand with high mortality rate, especially in the Opisthorchis viverrini (a parasite risk factor for CCA) endemic area of the northeastern region of the country. This study aimed to identify potential biomarkers from the plasma peptidome by CCA patients. Peptides were isolated using 10 kDa cut-off filter column and the flow-through was then used as a peptidome for LC-MS/MS analysis. A total of 209 peptides were obtained. Among these, 15 peptides were concerned with signaling pathways and 12 related to metabolic, regulatory, and biosynthesis of secondary metabolite pathways. Five exclusive peptides were identified as potential biomarkers, i.e. ETS domain-containing transcription factor ERF (P50548), KIAA0220 (Q92617), phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoform isoform 1 (P42338), LP2209 (Q6XYC0), and casein kinase II subunit alpha (P19784). Three of these biomarkers are signaling related molecules. A combination of these biomarkers for CCA diagnosis is proposed.

A Novel Heterozygous Mutation (F252Y) in Exon 7 of the IRF6 Gene is Associated with Oral Squamous Cell Carcinomas

  • Melath, Anil;Santhakumar, Gopi Krishnan;Madhavannair, Shyam Sunder;Nedumgottil, Binoy Mathews;Ramanathan, Arvind
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6803-6806
    • /
    • 2013
  • Background: Interferon regulatory factor 6 (IRF6) is a transcription factor with distinct and conserved DNA and protein binding domains. Mutations within the protein binding domain have been significantly observed in subjects with orofacial cleft relative to healthy controls. In addition, recent studies have identified loss of expression of IRF6 due to promoter hypermethylation in cutaneous squamous cell carcinomas. Since mutational events occurring within the conserved domains are likely to affect the function of a protein, we investigated whether regions within the IRF6 gene that encodes for the conserved protein binding domain carried mutations in oral squamous cell carcinoma (OSCC). Materials and Methods: Total chromosomal DNA extracted from 32 post surgical OSCC tissue samples were amplified using intronic primers flanking the exon 7 of IRF6 gene, which encodes for the major region of protein binding domain. The PCR amplicons from all the samples were subsequently resolved in a 1.2% agarose gel, purified and subjected to direct sequencing to screen for mutations. Results: Sequencing analysis resulted in the identification of a mutation within exon 7 of IRF6 that occurred in heterozygous condition in 9% (3/32) of OSCC samples. The wild type codon TTC at position 252 coding for phenylalanine was found to be mutated to TAC that coded for tyrosine (F252Y). Conclusions: The present study identified for the first time a novel mutation within the conserved protein binding domain of IRF6 gene in tissue samples of subjects with OSCC.

Dioscorea Extract (DA-9801) Modulates Markers of Peripheral Neuropathy in Type 2 Diabetic db/db Mice

  • Moon, Eunjung;Lee, Sung Ok;Kang, Tong Ho;Kim, Hye Ju;Choi, Sang Zin;Son, Mi-Won;Kim, Sun Yeou
    • Biomolecules & Therapeutics
    • /
    • v.22 no.5
    • /
    • pp.445-452
    • /
    • 2014
  • The purpose of this study was to investigate the therapeutic effects of DA-9801, an optimized extract of Dioscorea species, on diabetic peripheral neuropathy in a type 2 diabetic animal model. In this study, db/db mice were treated with DA-9801 (30 and 100 mg/kg, daily, p.o.) for 12 weeks. DA-9801 reduced the blood glucose levels and increased the withdrawal latencies in hot plate tests. Moreover, it prevented nerve damage based on increased nerve conduction velocity and ultrastructural changes. Decrease of nerve growth factor (NGF) may have a detrimental effect on diabetic neuropathy. We previously reported NGF regulatory properties of the Dioscorea genus. In this study, DA-9801 induced NGF production in rat primary astrocytes. In addition, it increased NGF levels in the sciatic nerve and the plasma of type 2 diabetic animals. DA-9801 also increased neurite outgrowth and mRNA expression of Tieg1/Klf10, an NGF target gene, in PC12 cells. These results demonstrated the attenuation of diabetic peripheral neuropathy by oral treatment with DA-9801 via NGF regulation. DA-9801 is currently being evaluated in a phase II clinical study.

Aberrant Expression of CCAT1 Regulated by c-Myc Predicts the Prognosis of Hepatocellular Carcinoma

  • Zhu, Hua-Qiang;Zhou, Xu;Chang, Hong;Li, Hong-Guang;Liu, Fang-Feng;Ma, Chao-Qun;Lu, Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.13
    • /
    • pp.5181-5185
    • /
    • 2015
  • Background: CCAT1 has been reported to be linked with pathogenesis of malignancies including colon cancer and gastric cancer. However, the regulatory effect of CCAT1 in hepatocellular carcinoma (HCC) remains unclear. The purpose of this research was to identify any role of CCAT1 in the progression of HCC. Materials and Methods: Real time-PCR was performed to test the relative expression of CCAT1 in HCC tissues. A computation screen of CCAT1 promoter was conducted to search for transcription-factor-binding sites. The association of c-Myc with CCAT1 promoter in vivo was tested by Pearson correlation analysis and chromatin immunoprecipitation assay. Additionally, Kaplan-Meier analysis and Cox proportional hazards analyses were performed. Results: c-Myc directly binds to the E-box element in the promoter region of CCAT, and when ectopically expressed increases promoter activity and expression of CCAT1. Moreover, Kaplan-Meier analysis demonstrated that the patients with low expression of CCAT1 demonstrated better overall and relapse-free survival compared with the high expression group. Cox proportional hazards analyses showed that CCAT1 expression was an independent prognostic factor for HCC patients. Conclusions: The findings demonstrated CCAT1, acting as a potential biomarker in predicting the prognosis of HCC, is regulated by c-Myc.