• Title/Summary/Keyword: regularized

Search Result 231, Processing Time 0.021 seconds

Regularized Channel Inversion for Multiple-Antenna Users in Multiuser MIMO Downlink (다중 안테나 다중 사용자 하향 링크 환경에서 Regularized Channel Inversion 기법)

  • Lee, Heun-Chul;Lee, Kwang-Won;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3A
    • /
    • pp.260-268
    • /
    • 2010
  • Channel inversion is one of the simplest techniques for multiuser downlink systems with single-antenna users. In this paper, we extend the regularized channel inversion technique developed for the single-antenna user case to multiuser multiple-input multiple-output (MIMO) channels with multiple-antenna users. We first employ the multiuser preprocessing to project the multiuser signals near the null space of the unintended users based on the MMSE criterion, and then the single-user preprocessing is applied to the decomposed MIMO interference channels. In order to reduce the complexity, we focus on non-iterative solutions for the multiuser transmit beamforming and use a linear receiver based on an MMSE criterion. Simulation results show that the proposed scheme outperforms existing joint iterative algorithms in most multiuser configurations.

Optimizing structural topology patterns using regularization of Heaviside function

  • Lee, Dongkyu;Shin, Soomi
    • Structural Engineering and Mechanics
    • /
    • v.55 no.6
    • /
    • pp.1157-1176
    • /
    • 2015
  • This study presents optimizing structural topology patterns using regularization of Heaviside function. The present method needs not filtering process to typical SIMP method. Using the penalty formulation of the SIMP approach, a topology optimization problem is formulated in co-operation, i.e., couple-signals, with design variable values of discrete elements and a regularized Heaviside step function. The regularization of discontinuous material distributions is a key scheme in order to improve the numerical problems of material topology optimization with 0 (void)-1 (solid) solutions. The weak forms of an equilibrium equation are expressed using a coupled regularized Heaviside function to evaluate sensitivity analysis. Numerical results show that the incorporation of the regularized Heaviside function and the SIMP leads to convergent solutions. This method is tested using several examples of a linear elastostatic structure. It demonstrates that improved optimal solutions can be obtained without the additional use of sensitivity filtering to improve the discontinuous 0-1 solutions, which have generally been used in material topology optimization problems.

A Mixed Norm Image Restoration Algorithm Using Multi Regularization Parameters (다중 정규화 매개 변수를 이용한 혼합 norm 영상 복원 방식)

  • Choi, Kwon-Yul;Kim, Myoung-Jin;Hong, Min-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.11C
    • /
    • pp.1073-1078
    • /
    • 2007
  • In this paper, we propose an iterative mixed norm image restoration algorithm using multi regularization parameters. A functional which combines the regularized $l_2$ norm functional and the regularized $l_4$ norm functional is proposed to efficiently remove arbitrary noise. The smoothness of each functional is determined by the regularization parameters. Also, a regularization parameter is used to determine the relative importance between the regularized $l_2$ norm functional and the regularized $l_4$ norm functional using kurtosis. An iterative algorithm is utilized for obtaining a solution and its convergence is analyzed. Experimental results demonstrate the capability of the proposed algorithm.

Regularized Iterative Image Restoration by using Method of Conjugate Gradient (공액경사법을 이용한 정칙화 반복 복원 방법)

  • 홍성용
    • Journal of the Korea Society of Computer and Information
    • /
    • v.3 no.2
    • /
    • pp.139-146
    • /
    • 1998
  • This paper proposes a regularized iterative image restoration using method of conjugate gradient considering a priori information. Compared with conventional regularized method of conjugate gradient, this method has merits to prevent the artifacts by ringing effects and the partial magnification of the noise in the course of restoring the image degraded by blur and additive noise. Proposed method applies the constraints to accelerate the convergence ratio near the edge portions, and the regularized parameter suppresses the magnification of the noise. As experimental results, I show the superior convergence ratio and the suppression by the artifacts of the proposed method compared with conventional methods.

  • PDF

Regularized Iterative Image Restoration with Relaxation Parameter (이완변수를 고려한 영상의 정칙화 반복 복원)

  • 홍성용;이태홍
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.1
    • /
    • pp.91-99
    • /
    • 1994
  • We proposed the regularized iterative restoration method considering relaxation parameter and regularization paramenter in order to restore the noisy motion-blurred images. We used (i-H) as a regularization operator and these two kinds of constraints were applied while conventional regularization iterative restoration method proposed by Jan Biemond et al used the 2-D Laplacian filter and a predetermined regularization parameter value and relaxation parameter to 1. Through the experimental results, we showed better results compared with those by a conventional method and or regularized iterative restoration method just considering only a regularization parameter. These two kinds of constratints have good effects when applied into the regularized iterative restoration method for noisy motion-blurred images.

  • PDF

Regularized iterative image resotoration by using method of conjugate gradient with constrain (구속 조건을 사용한 공액 경사법에 의한 정칙화 반복 복원 처리)

  • 김승묵;홍성용;이태홍
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.9
    • /
    • pp.1985-1997
    • /
    • 1997
  • This paper proposed a regularized iterative image restoration by using method of conjugate gradient. Compared with conventional iterative methods, method of conjugate gradient has a merit to converte toward a solution as a super-linear convergence speed. But because of those properties, there are several artifacts like ringing effects and the partial magnification of the noise in the course of restoring the images that are degraded by a defocusing blur and additive noise. So, we proposed the regularized method of conjugate gradient applying constraints. By applying the projectiong constraint and regularization parameter into that method, it is possible to suppress the magnification of the additive noise. As a experimental results, we showed the superior convergence ratio of the proposed mehtod compared with conventional iterative regularized methods.

  • PDF

An Experimental Study on Smoothness Regularized LDA in Hyperspectral Data Classification (하이퍼스펙트럴 데이터 분류에서의 평탄도 LDA 규칙화 기법의 실험적 분석)

  • Park, Lae-Jeong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.534-540
    • /
    • 2010
  • High dimensionality and highly correlated features are the major characteristics of hyperspectral data. Linear projections such as LDA and its variants have been used in extracting low-dimensional features from high-dimensional spectral data. Regularization of LDA has been introduced to alleviate the overfitting that often occurs in a small-sized training data set and leads to poor generalization performance. Among them, a smoothness regularized LDA seems to be effective in the feature extraction for hyperspectral data due to its capability of utilizing the high correlatedness. This paper studies the performance of the regularized LDA in hyperspectral data classification experimentally with varying conditions of the training data. In addition, a new dual smoothness regularized LDA is proposed and evaluated that makes use of both the spectral-domain and spatial-domain correlations between neighboring pixels.

Non-Robust and Robust Regularized Zero-Forcing Interference Alignment Methods for Two-Cell MIMO Interfering Broadcast (두 셀 다중 안테나 하향링크 간섭 채널에서 비강인한/강인한 정칙화된 제로포싱 간섭 정렬 방법)

  • Shin, Joonwoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.7
    • /
    • pp.560-570
    • /
    • 2013
  • In this paper, we propose transceiver design strategies for the two-cell multiple-input multiple-output (MIMO) interfering broadcast channel where inter-cell interference (ICI) exists in addition to inter-user interference (IUI). We first formulate the generalized zero-forcing interference alignment (ZF-IA) method based on the alignment of IUI and ICI in multi-dimensional subspace. We then devise a minimum weighted-mean-square-error (WMSE) method based on "regularizing" the precoders and decoders of the generalized ZF-IA scheme. In contrast to the existing weighted-sum-rate-maximizing transceiver, our method does not require an iterative calculation of the optimal weights. Because of this, the proposed scheme, while not designed specially to maximize the sum-rate, is computationally efficient and achieves a faster convergence compared to the known weighed-sum-rate maximizing scheme. Through analysis and simulation, we show the effectiveness of the proposed regularized ZF-IA scheme.

Limited Feedback Performance Aanlysis of Regularized Joint Spatial Division and Multiplexing Scheme (정규화된 결합 공간 분할 다중화 기법의 제한된 피드백 환경에서 성능 분석)

  • Song, Changick
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.420-424
    • /
    • 2021
  • The massive MIMO system, which is a core technology of 5G communication systems, has a problem that it is difficult to implement in a frequency division duplex system based on limited channel feedback because a large amount of channel information is required at the transmitting end. In order to solve this problem, the Joint Spatial Division and Multiplexing (JSDM) technique that dramatically reduces the channel information requirement by removing interference between the user groups using channel correlation information that does not change for a long time has been proposed. Recently, a regularized JSDM technique has been proposed to further improve performance by allowing residual interference between the user groups. However, such JSDM-related studies were mainly designed to focus on inter-group interference cancellation, and thus performance analysis was not performed in a more realistic environment assuming limited feedback in the intra-group interference cancellation phase. In this paper, we analyze the performance of the JSDM and regularized JSDM techniques according to the number of groups and users in a limited feedback environment, and through the simulation results, demonstrate that the regularized JSDM technique shows a more remarkable advantage compared to the existing JSDM in a limited feedback environments.

A FAST NUMERICAL METHOD FOR SOLVING A REGULARIZED PROBLEM ASSOCIATED WITH OBSTACLE PROBLEMS

  • Yuan, Daming;Li, Xi;Lei, Chengfeng
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.5
    • /
    • pp.893-905
    • /
    • 2012
  • Kirsi Majava and Xue-Cheng Tai [12] proposed a modified level set method for solving a free boundary problem associated with unilateral obstacle problems. The proximal bundle method and gradient method were applied to solve the nonsmooth minimization problems and the regularized problem, respectively. In this paper, we extend this approach to solve the bilateral obstacle problems and employ Rung-Kutta method to solve the initial value problem derived from the regularized problem. Numerical experiments are presented to verify the efficiency of the methods.