• Title/Summary/Keyword: regular state

Search Result 488, Processing Time 0.028 seconds

Fatigue Life Evaluation of an Actual Structure under the Irregular Loading using an Acceleration Test (가속시험을 통한 불규칙하중을 받는 실구조물의 피로수명평가)

  • 김형익;배봉국;박재실;석창성;모진용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.166-169
    • /
    • 2004
  • A fatigue test was used to evaluate the fatigue life of an actual structure. The loaded state and the constraint condition of an actual structure must be same as the specimen in order to apply the test results to an actual structure by the specimen. The loaded state and constraint conditions can't be same as the specimen in the actual structure which is complicated. In order to reduce these differences, an actual structure test with a lot of frequencies is need to get a fatigue life curve. Therefore, ten sets of accelerated test units which attached unbalanced mass were composed in this study. Acceleration history about the vibration of an actual structure was acquired. Rainflow counting was used on acceleration history, and the life curve return formula was assumed. The return formula that damage satisfied `1' was acquired in a feedback process by the Miner's rule, which was the linear cumulative damage theory. A conservative fatigue life curve was determined with a return formula to have been presumed by each set. The fatigue life of regular rpm condition was calculated by these conservative fatigue life curves.

  • PDF

Effects of Clinical Training on Stress, Anxiety and Changes in Autonomic Nervous System in Nursing Students (임상실습이 간호학생의 스트레스, 불안 및 자율신경계 변화에 미치는 영향)

  • Kim, Jin-Il;Lee, Jeong-Soon
    • Journal of Korean Biological Nursing Science
    • /
    • v.13 no.2
    • /
    • pp.102-108
    • /
    • 2011
  • Purpose: The purpose of this study was to examine the effects of first clinical training on stress, anxiety and changes in autonomic nervous system in nursing students. Methods: Seventy-four nursing students were assigned to the experimental group (n=36) that had two weeks of clinical training, and the control group (n=38) that had only two weeks of regular classes. Perceived stress, state anxiety and heart rate variability (HRV) were measured at the beginning and end of the experiment. Results: Perceived stress in the experimental group was significantly higher than in the control group. However, State anxiety was not significantly different between the two groups. All indices of HRV except LF/HF ratio were significantly different between the two groups. LF norm in the experimental group was significantly higher than in the control group, and HF norm in the experimental group was significantly lower than in the control group. Conclusion: Based on these results, it can be suggested that clinical training increases the perceived stress and affects the changes in autonomic nervous system in nursing students.

Analysis of Conservation Scientific Deterioration Diagnosis and Conservation Environment of the Samjonbul Carved on Rock Surface in Taean, Korea (태안마애삼존불의 보존과학적 훼손도 진단과 보존환경 분석)

  • Eom, Doo-Sung;Jun, Byung-Kyu;Han, Min-Su;Lee, Jang-Jon;Song, Chi-Young
    • 보존과학연구
    • /
    • s.29
    • /
    • pp.19-44
    • /
    • 2008
  • Sam-jon-bul or Three Buddha Image Carved on rock surface which is called Sam-jon-bul in Taean, state-designated national treasure No. 307, made in Baek-je Period, has two Buddha images and one Bodhisattva. The detached part of the Sam-jon-bul from wall rock has been attached through conservation treatment in 1995. Few study has been done on weathering condition of petrological point of view and damage while the surface of the Sam-jon-bul has been under serious weathering (relief) of loosing stone particles, and discoloration. In this study, it was made weathering damage maps, which show physical property of the material and state of damage of Sam-jon-bul, in order to dialogize how far the weathering has been done. It has been considered continuing on-site monitoring as necessity when Sam-jon-bul was covered with dew, which may have been caused by change in weather in and out of the protect building. It is necessary to set up detailed conservation plan for it by doing regular diagnosis on the influence of the protect building and weathering of Sam-jon-bul.

  • PDF

CONTROL OF LASER WELD KEYHOLE DYNAMICS BY POWER MODULATION

  • Cho, Min-Hyun;Dave Farson
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.600-605
    • /
    • 2002
  • The keyhole formed by high energy density laser-material interaction periodically collapses due to surface tension of the molten metal in partial penetration welds. The collapse sometimes traps a void at the bottom of the keyhole, and it remains as welding defects. This phenomenon is seen as one cause of the instability of the keyhole during laser beam welding. Thus, it seems likely that improving the stability of the keyhole can reduce voids and uniform the penetration depth. The goal of this work is to develop techniques for controlling laser weld keyhole dynamics to reduce weld defects such as voids and inconsistent penetration. Statistical analysis of the penetration depth signals in glycerin determined that keyhole dynamics are chaotic. The chaotic nature of keyhole fluctuations and the ability of laser power modulation to control them have been demonstrated by high-speed video images of laser welds in glycerin. Additionally, an incident leading beam angle is applied to enhance the stability of the keyhole. The quasi-sinusoidal laser beam power of 400Hz frequency and 15$^{\circ}$ incident leading beam angle were determined to be the optimum parameters for the reduction of voids. Finally, chaos analyses of uncontrolled signals and controlled signals were done to show the effectiveness of modulation on the keyhole dynamics. Three-dimensional phase plots for uncontrolled system and controlled system are produced to demonstrate that the chaotic keyhole dynamics is converted to regular periodic behavior by control methods: power modulation and incident leading beam angle.

  • PDF

Simulation of Wave Propagation by Cellular Automata Method (세포자동자법에 의한 파동전파의 시뮬레이션)

  • ;;森下信
    • Journal of KSNVE
    • /
    • v.10 no.4
    • /
    • pp.610-614
    • /
    • 2000
  • Cellular Automata(CA)s are used as a simple mathematical model to investigate self-organization in statistical mechanics, which are originally introduced by von Neumann and S. Ulam at the end of the 1940s. CAs provide a framework for a large class of discrete models with homogeneous interactions, which are characterized by the following fundamental properties: 1) CAs are dynamical systems in which space and time are discrete. 2) The systems consist of a regular grid of cells. 3) Each cell is characterized by a state taken from a finite set of states and updated synchronously in discrete time steps according to a local, identical interaction rule. 4) The state of a cell is determined by the previous states of a surrounding neighborhood of cells. A cellular automaton has been attracted wide interest in modeling physical phenomena, which are described generally, partial differential equations such as diffusion and wave propagation. This paper describes one and two-dimensional analysis of wave propagation phenomena modeled by CA, where the local interaction rules were derived referring to the Lattice Gas Model reported by Chen et al., and also including finite difference scheme. Modeling processes by using CA are discussed and the simulation results of wave propagation with one wave source are compared with that by finite difference method.

  • PDF

Robust Stabilization and Guaranteed Cost Control for Discrete-time Singular Systems with Parameter Uncertainties (변수 불확실성을 가지는 이산시간 특이시스템의 강인 안정화 및 강인 보장비용 제어)

  • Kim, Jong-Hae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.3
    • /
    • pp.15-21
    • /
    • 2009
  • In this paper, we consider the design problem of robust stabilization and robust guaranteed cost state feedback controller for discrete-time singular systems with parameter uncertainties by LMI(linear matrix inequality) approach without semi-definite condition and decomposition of system matrices. The objective of robust stabilization controller is to construct a state feedback controller such that the closed-loop system is regular, causal, and stable. In the case of robust guaranteed cost control, the optimal value of guaranteed cost and controller design method are presented on the basis of robust stabilization control technique. Finally, a numerical example is provided to show the validity of the design methods.

Cervical Cytological Screening Results of 8,495 Cases in Turkey - Common Inflammation but Infrequent Epithelial Cell Abnormalities?

  • Daloglu, Ferah Tuncel;Karakaya, Yeliz Arman;Balta, Hilal;Altun, Eren;Duman, Aslihan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.13
    • /
    • pp.5127-5131
    • /
    • 2014
  • Background: Cervical cancer is the ninth most common cancer among females in Turkey. Cervical smear is a routine screening test used for the detection of cervical abnormalities and also it detects certain infections of the cervix. Objective: To analyze cervical smear results of our clinic in order to determine most frequent pathology of the women in North Eastern Anatolia Region of Turkey. Materials and Methods: In a retrospective study design, 8,495 cervical cytology cases diagnosed at the Pathology Department of the Regional Education and Research Hospital in Erzurum over the last one and half years extending from August 2012 to December 2013 were investigated. Results: The most common diagnosis was found to be inflammation, 65.5 % (5,566 out of 8,495), and the least was squamous epithelial abnormalities 0.2% (13 out of 8,495). There was some variation among the three pathologists regarding diagnosis but findings for the latter. Conclusions: Regular cervical smear tests are one of the most important strategies in early diagnosis of cervical cancer but there are conflicting data regarding the prevalence of epithelial cell abnormalities in Turkey, and the reasons o f this should be investigated.

An Improved Poincaré-like Carleman Linearization Approach for Power System Nonlinear Analysis

  • Wang, Zhou-Qiang;Huang, Qi;Zhang, Chang-Hua
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.271-281
    • /
    • 2013
  • In order to improve the performance of analysis, it is important to consider the nonlinearity in power system. The Carleman embedding technique (linearization procedure) provides an effective approach in reduction of nonlinear systems. In the approach, a group of differential equations in which the state variables are formed by the original state variables and the vector monomials one can build with products of positive integer powers of them, is constructed. In traditional Carleman linearization technique, the tensor matrix is truncated to form a square matrix, and then regular linear system theory is used to solve the truncated system directly. However, it is found that part of nonlinear information is neglected when truncating the Carleman model. This paper proposes a new approach to solve the problem, by combining the Poincar$\acute{e}$ transformation with the Carleman linearization. Case studies are presented to verify the proposed method. Modal analysis shows that, with traditional Carleman linearization, the calculated contribution factors are not symmetrical, while such problems are avoided in the improved approach.

Uncertainty quantification for structural health monitoring applications

  • Nasr, Dana E.;Slika, Wael G.;Saad, George A.
    • Smart Structures and Systems
    • /
    • v.22 no.4
    • /
    • pp.399-411
    • /
    • 2018
  • The difficulty in modeling complex nonlinear structures lies in the presence of significant sources of uncertainties mainly attributed to sudden changes in the structure's behavior caused by regular aging factors or extreme events. Quantifying these uncertainties and accurately representing them within the complex mathematical framework of Structural Health Monitoring (SHM) are significantly essential for system identification and damage detection purposes. This study highlights the importance of uncertainty quantification in SHM frameworks, and presents a comparative analysis between intrusive and non-intrusive techniques in quantifying uncertainties for SHM purposes through two different variations of the Kalman Filter (KF) method, the Ensemble Kalman filter (EnKF) and the Polynomial Chaos Kalman Filter (PCKF). The comparative analysis is based on a numerical example that consists of a four degrees-of-freedom (DOF) system, comprising Bouc-Wen hysteretic behavior and subjected to El-Centro earthquake excitation. The comparison is based on the ability of each technique to quantify the different sources of uncertainty for SHM purposes and to accurately approximate the system state and parameters when compared to the true state with the least computational burden. While the results show that both filters are able to locate the damage in space and time and to accurately estimate the system responses and unknown parameters, the computational cost of PCKF is shown to be less than that of EnKF for a similar level of numerical accuracy.

Path-finding by using generalized visibility graphs in computer game environments (컴퓨터 게임 환경에서 일반화 가시성 그래프를 이용한 경로찾기)

  • Yu, Kyeon-Ah;Jeon, Hyun-Joo
    • Journal of the Korea Society for Simulation
    • /
    • v.14 no.3
    • /
    • pp.21-31
    • /
    • 2005
  • In state-of-the-art games, characters can move in a goal-directed manner so that they can move to the goal position without colliding obstacles. Many path-finding methods have been proposed and implemented for these characters and most of them use the A* search algorithm. When .the map is represented with a regular grid of squares or a navigation mesh, it often takes a long time for the A* to search the state space because the number of cells used In the grid or the mesh increases for higher resolution. Moreover the A* search on the grid often causes a zigzag effect, which is not optimal and realistic. In this paper we propose to use visibility graphs to improve the search time by reducing the search space and to find the optimal path. We also propose a method of taking into account the size of moving characters in the phase of planning to prevent them from colliding with obstacles as they move. Simulation results show that the proposed method performs better than the grid-based A* algorithm in terms of the search time and space and that the resulting paths are more realistic.

  • PDF