International conference on construction engineering and project management
/
2009.05a
/
pp.417-424
/
2009
For a construction project to progress smoothly, effective cost estimation is vital, particularly in the conceptual and schematic design stages. In these early phases, despite the fact that initial estimates are highly sensitive to changes in project scope, owners require accurate forecasts which reflect their supplying information. Thus, cost estimators need effective estimation strategies. Practically, parametric cost estimates are the most commonly used method in these initial phases, which utilizes historical cost data (Karshenas 1984, Kirkham 2007). Hence, compilation of historical data regarding appropriate cost variance governing parameters is a prime requirement. However, precedent practice of data mining (data preprocessing) for denoising internal errors or abnormal values is needed before compilation. As an effort to deal with this issue, this research proposed a statistical methodology for data preprocessing and verified that data preprocessing has a positive impact on the enhancement of estimate accuracy and stability. Moreover, Statistically Preprocessed data Based Parametric (SPBP) cost models are developed based on multiple regression equations and verified their effectiveness compared with conventional cost models.
Communications for Statistical Applications and Methods
/
v.29
no.6
/
pp.641-653
/
2022
Penalized least squares methods are important tools to simultaneously select variables and estimate parameters in linear regression. The penalized maximum likelihood can also be used for the same purpose assuming that the error distribution falls in a certain parametric family of distributions. However, the use of a certain parametric family can suffer a misspecification problem which undermines the estimation accuracy. To give sufficient flexibility to the error distribution, we propose to use the symmetric log-concave error distribution with LASSO penalty. A feasible algorithm to estimate both nonparametric and parametric components in the proposed model is provided. Some numerical studies are also presented showing that the proposed method produces more efficient estimators than some existing methods with similar variable selection performance.
One of the basic assumptions of the regression models is that the parameter vector does not vary across sample observations. If the parameter vector is not constant for all observations in the sample, the statistical model is changed and the usual least squares estimators do not yield unbiased, consistent and efficient estimates. This study investigates the regression model with some or all parameters vary across partitions of the whole sample data when the model permits different response coefficients during unusual time periods. Since the usual test for overall homogeneity of regressions across partitions of the sample data does not explicitly identify the break points between the partitions, the testing the equality between subsets of coefficients in two or more linear regressions is generalized and combined with the test procedure to search the break point. The method is applied to find the possibility and the turning point of the structural change in the long-run unemployment rate in the usual static framework by using the regression model. The relationships between the variables included in the model are reexamined in the dynamic framework by using Vector Autoregression.
Journal of the Korean Data and Information Science Society
/
v.25
no.1
/
pp.211-218
/
2014
Qu et. al. (2000) proposed the quadratic inference functions (QIF) method to marginal model analysis of longitudinal data to improve the generalized estimating equations (GEE). It yields a substantial improvement in efficiency for the estimators of regression parameters when the working correlation is misspecified. But for the longitudinal data with time-dependent covariates, when the implicit full covariates conditional mean (FCCM) assumption is violated, the QIF can not provide more consistent and efficient estimator than GEE (Cho and Dashnyam, 2013). Lai and Small (2007) divided time-dependent covariates into three types and proposed generalized method of moment (GMM) for longitudinal data with time-dependent covariates. They showed that their GMM type II and GMM moment selection methods can be more ecient than GEE with independence working correlation (GEE-ind) in the case of type II time-dependent covariates. We develop upgraded QIF method for type II time-dependent covariates. We show that this upgraded QIF method can provide substantial gains in efficiency over QIF and GEE-ind in the case of type II time-dependent covariates.
Small area estimation is a statistical inference method to overcome large variance due to a small sample size allocated in a small area. A shrinkage estimator obtained by minimizing relative error(RE) instead of MSE has been suggested. The estimator takes advantage of good interpretation when the data range is large. A semiparametric estimator is also studied for small area estimation. In this study, we suggest a semiparametric shrinkage small area estimator and compare small area estimators using labor statistics.
Journal of the Korea Academia-Industrial cooperation Society
/
v.15
no.12
/
pp.7018-7024
/
2014
This study examined the squared returns and absolute returns of KOSPI 200 with GPH (Geweke and Porter-Hudak, 1983) estimators. GPH was estimated by the long-term memory preserving time series parameter d in linear regression. This called the GPH estimator, which depends on a bandwidth m. m was decided by confirming the stable section of the point estimate by validating the track of the GPH estimator according to the value of m. The result suggests that by satisfying 0< d <0.5, the squared returns and absolute returns of KOPI 200 retains long-term memory.
We use nonlinear regression models (such as the Hill Model) when we analyze data in toxicology and/or pharmacology. In nonlinear regression models an estimator of parameters and estimation of measurement about uncertainty of the estimator are influenced by the variance structure of the error. Thus, estimation methods should be different depending on whether the data are homoscedastic or heteroscedastic. However, we do not know the variance structure of the error until we actually analyze the data. Therefore, developing estimation methods robust to the variance structure of the error is an important problem. In this paper we propose a method to estimate parameters in nonlinear regression models based on a preliminary test. We define an estimator which uses either the ordinary least square estimation method or the iterative weighted least square estimation method according to the results of a simple preliminary test for the equality of the error variance. The performance of the proposed estimator is compared to those of existing estimators by simulation studies. We also compare estimation methods using real data obtained from the National Toxicology program of the United States.
The purpose of this study is to estimate the economic value of the Songieong Beach in Off-season, using a Individual Travel Cost Model(ITCM). Songieong Beach is located in Busan but far away from city. These days, however, the increased rate of traffic inflow to the Songieong beach and the five-day working week are reflected in the trend analysis. Moreover, people have changed psychological value. For that reason, visitors are on the increase on the beach in off-season. The ITCM is applied to estimate non-market value or environmental Good like a Contingent Valuation Method and Hedonic Price Model etc. The ITCM was derived from the Count Data Model(i.e. Poisson and Negative Binomial model). So this paper compares Poisson and negative binomial count data models to measure the tourism demands. The data for the study were collected from the Songjeong Beach on visitors over the a week from November 1 through November 23, 2006. Interviewers were instructed to interview only individuals. So the sample was taken in 113. A dependent variable that is defined on the non-negative integers and subject to sampling truncation is the result of a truncated count data process. This paper analyzes the effects of determinants on visitors' demand for exhibition using a class of maximum-likelihood regression estimators for count data from truncated samples, The count data and truncated models are used primarily to explain non-negative integer and truncation properties of tourist trips as suggested by the economic valuation literature. The results suggest that the truncated negative binomial model is improved overdispersion problem and more preferred than the other models in the study. This paper is not the same as the others. One thing is that Estimating Value of the Beach in off-season. The other thing is this study emphasizes in particular 'travel cost' that is not only monetary cost but also including opportunity cost of 'travel time'. According to the truncated negative binomial model, estimates the Consumer Surplus(CS) values per trip of about 199,754 Korean won and the total economic value was estimated to be 1,288,680 Korean won.
Various methods for accurate parameter estimation have been developed in a sample survey and it is also common to use a ratio estimator or the regression estimator using auxiliary information. The ratio-type estimator has been used in many recent studies and is known to improve the accuracy of estimation by adjusting the ratio estimator. However, various studies are under way to solve it since the ratio-type estimator is biased. In this study, we propose a generalized ratio-type estimator with a new parameter added to the ratio-type estimator to remove the bias. We suggested a method to apply this result to the parameter estimation under the error assumption of heteroscedasticity. Through simulation, we confirmed that the suggested generalized ratio-type estimator gives good results compared to conventional ratio-type estimators.
The purpose of this study was to provide the guidance in more objective and proper clothing design and a strategy of fashion marketing from consumer sensibilities about adult women's town wear in un-limited circumstance. The specific objectives were 1) to investigate relationship between fashion sensibility and consumer sensibility of Good and Bad women's town wear, 2) to compare fashion sensibility with consumer sensibility of Good and Bad women's town wear, and 3) to investigate a dimension of Good and Bad women's town wear in fashion sensibility. Because they can affect estimators, the collected photos at shopping mall, department stores, and churches (S/S, F/W: April 28, 2004~May 1, 2005) were prepared removing face and background and attached on gray board. To investigate consumer sensibilities, the stimulus were 80 photos (40 for 'good', 40 for 'Bad'). The questionnaire consisted of bi-polar 25 pairs adjective scale of consumer sensibility was distributed 600 female (20's~40's) living in Busan (June 28, 2005~July 11, 2005). The data were analyzed by ANOVA, Regression analysis, and MDS. The results of practical study are summarized as follows. Fashion sensibility on the preference in Good and Bad women's town wear is closely related in 'want to buy-do not want to buy' and buying need is 'like-dislike'. For the fashion sensibility dimension at Good women's town wear, X axis showed from Young to Adult and Y axis showed from Hard to Comfortable following positioned design characters. For the fashion sensibilities dimension at Bad women's town wear, X axis showed from Young to Adult, Y axis showed from Normal to Unique, and Z axis showed from Heavy to Light following positioned design characters.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.