• Title/Summary/Keyword: regions

Search Result 17,726, Processing Time 0.049 seconds

Thermal Dynamics of Core and Periphery Temperature during Treadmill Sub-maximal Exercise and Intermittent Regional Body Cooling (트래드밀에서의 최대하 부하 운동과 간헐적 부위별 인체 냉각 시 심부와 말초 부위의 체온 변화)

  • Lee, Joo-Young;Koscheyev, Victor S.;Kim, Jung-Hyun;Warpeha, Joe M.
    • Journal of Korean Living Environment System
    • /
    • v.16 no.2
    • /
    • pp.89-100
    • /
    • 2009
  • The present study was designed to observe the thermal dynamics of core and skin temperatures during sub-maximal treadmill exercise; to investigate the effect of regional body cooling during short rest after the treadmill exercise on the thermal dynamics. Three conditions (No cooling, Head/Hand cooling, Leg cooling) were simulated in a climatic chamber at 24±1℃ and 50±5%RH. Subjects performed two bouts of treadmill exercise at a rate of 80%HRmax followed by rest. Body cooling with a hood, long gloves, and a blanket that circulated water set at 15℃ was assigned during two bouts of rest. The results showed that (1) rectal temperature (Tre) did not show significant difference between three conditions; (2) Skin temperatures had specific features, depending on body regions. In particular, the initial fall phenomena of skin temperatures at the onset of exercise were noteworthy in the chest, thigh, calf, and finger tip. Of these, the most significant initial fall was found in finger temperature (Tfing). (3) During the period of the initial fall in skin temperatures, Tre gradually increased. (4) The magnitude of the fall of Tfing at the onset of 2nd running was on average 4.8, 5.1 and 3.4℃ for Control, HH cooling, and Leg cooling, respectively (p<0.05). The initial drop of Tfing at the onset of running was maintained for an average of 8.1, 7.9 and 6.3 minutes for Control, HH cooling, and Leg cooling, with no significant differences. In conclusion, the initial fall phenomena at the onset of treadmill exercise reflected non-thermal factors, as opposed to internal thermal status. The magnitude of the initial fall in Tfing was affected by legs cooling. Therefore, the initial fall phenomenon should be considered when interpreting the thermal status of the shell during heavy works/exercises that assigned with intermittent regional body cooling.

Musical Characteristics and Locality of Naeseo-deulsori (내서들일소리의 음악적 특징과 지역성)

  • Seo, Jeong-mae
    • (The) Research of the performance art and culture
    • /
    • no.43
    • /
    • pp.325-356
    • /
    • 2021
  • This study is to analyze the current status of transmission and musical characteristics of Naeseo-deulilsori in Changwon, and the purpose of this study is to illuminate the value of deulilsori in Naeseo region, so that it can be continuously inherited. Naeseo-deulsori consists of the Mosimgi-sori, Nonmaegi-sori, and Chingchingi-sori. Mosimgi-sori, which is called when planting a seedling, is divided into 6 types according to the order and situation of work. ① rice planting sound, ② rice planting sound called in the morning, ③ rice planting sound called at lunch time, ④ rice planting sound called after lunch, ⑤ rice planting sound called when it is raining or cloudy, ⑥ rice planting sound called at sunset. Mosimgi-sori, which is called when planting a seedling, is based on Menali-tori, but partly influenced by Yugjabaegi-tori. However, it was typical Menali-tori in the slow The sound of rice planting in the nearby Haman region, but as the speed increased in the fast The sound of rice planting, the characteristics of Menali-tori faded and la↘mi perfect fourth descending frequently appeared. In the sound of rice planting in Goseong, both slow and fast sounds were strongly influenced by Yugjabaegi-tori. In the end, the sound of rice planting in the Naeseo region is less Yugjabaegi-tori than in the Goseong region and stronger than in Haman region. This combination of tori is a musical bargaining phenomenon that appears in the border region, and it can be said to be a geographical and regional characteristic of the Naeseo region. Nonmaegi-sori has the same sound as 'Sangsadeio' throughout the nearby Goseong and Haman regions. However, in Nonmaegi-sori in the Naeseo region, a strong Gyeong-tori tendency is found in the sound received. Looking at the flow of the melody of Nonmaegi-sori, it seems that the pitch has been changed by the intestines in recent years, and this modified melodic form has continued as it is. In order to guarantee locality, this part seems to need to be corrected in the future.

Determination of Fire Blight Susceptibility on Wild Rosaceae Plants in Korea by Artificial Inoculation (인공접종을 통한 국내 야생 장미과 식물의 화상병 감수성 검정)

  • In Woong Park;Yu-Rim Song;Eom-Ji Oh;Yoel Kim;In Sun Hwang;Mi-Jin Jeon;Chorong Ahn;Jin-Suk Kim;Soonok Kim;Chang-Sik Oh
    • Research in Plant Disease
    • /
    • v.29 no.1
    • /
    • pp.23-38
    • /
    • 2023
  • The fire blight caused by Erwinia amylovora (Ea) is a devastating disease of Rosaceae plants, including commercially important apple and pear trees. Since the first report in Korea in May 2015, it has been spreading to neighboring regions gradually. Host plants can be infected by pollinators like bees, rainfall accompanied by wind, and cultural practices such as pruning. Many studies have revealed that wild Rosaceae plants such as Cotoneaster spp., Crataegus spp., Pyracantha spp., Prunus spp., and Sorbus spp. can be reservoirs of Ea in nature. However, wild Rosaceae plants in Korea have not been examined yet whether they are susceptible to fire blight. Therefore, the susceptibility to fire blight was examined with 25 species in 10 genera of wild Rosaceae plants, which were collected during 2020-2022, by artificial inoculation. Bacterial suspension (108 cfu/ml) of Ea type strain TS3128 was inoculated artificially in flowers, leaves, stems, and fruits of each plant species, and development of disease symptoms were monitored. Moreover, the presence of Ea bacteria from inoculated samples were checked by conventional polymerase chain reaction. Total 14 species of wild Rosaceae plants showed disease symptoms of fire blight, and Ea bacteria were detected inside of inoculated plant parts. These results suggest that wild Rosaceae plants growing nearby commercial apple and pear orchards in Korea can be Ea reservoirs, and thus they should be monitored regularly to minimize the damage by Ea infection and spreading.

Monitoring the Reoccurrence of Fire Blight and the Eradication Efficiency of Erwinia amylovora in Burial Sites of Infected Host Plants Using Sentinel Plants (미끼식물을 이용한 화상병 감염 기주 매몰지 내 화상병균 제거 효율 검증 및 병 재발 모니터링)

  • In Woong, Park;Yu-Rim, Song;Nguyen Trung, Vu;Eom-Ji, Oh;In Sun, Hwang;Hyeonheui, Ham;Seong Hwan, Kim;Duck Hwan, Park;Chang-Sik, Oh
    • Research in Plant Disease
    • /
    • v.28 no.4
    • /
    • pp.221-230
    • /
    • 2022
  • The fire blight caused by Erwinia amylovora (Ea) was first reported in 2015 in Korea, and the disease has rapidly spread to 22 regions until 2021. In Korea, all host plants in the apple and pear orchards where fire blight occurred should be eliminated and buried by the Plant Protection Act. To prevent the spread of the disease, all burial sites were prohibited from planting the new host plants for the next three years. To confirm the eradication efficiency of Ea and the reoccurrence of fire blight, the surveillance facilities were established on three burial sites from 2019 to 2020 in Anseong-si, Gyeonggi-do, and Chungju-si, Chungcheongbuk-do. As host plants, five apple trees of fire blight-susceptible cultivar 'Fuji', were planted in each facility. All facilities were enclosed with fences and nets and equipped with two CCTVs, motion sensors, and several other sensors for recording weather conditions to monitor the environment of the sentinel plants in real-time. The sentinel plants were checked for the reoccurrence of fire blight routinely. Suspicious plant parts were collected and analyzed for Ea detection by loop-mediated isothermal amplification polymerase chain reaction and conventional polymerase chain reaction. Until November 2022, Ea has not been detected in all sentinel plants. These results might support that the burial control of infected plants in soil works efficiently to remove Ea and support the possibility to shorten the prohibition period of host plant establishment in the burial sites.

Performance evaluation of hyperspectral bathymetry method for morphological mapping in a large river confluence (초분광수심법 기반 대하천 합류부 하상측정 성능 평가)

  • Kim, Dongsu;Seo, Youngcheol;You, Hojun;Gwon, Yeonghwa
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.3
    • /
    • pp.195-210
    • /
    • 2023
  • Additional deposition and erosion in large rivers in South Korea have continued to occur toward morphological stabilization after massive dredging through the four major river restoration project, subsequently requiring precise bathymetry monitoring. Hyperspectral bathymetry method has increasingly been highlighted as an alternative way to estimate bathymetry with high spatial resolution in shallow depth for replacing classical intrusive direct measurement techniques. This study introduced the conventional Optimal Band Ratio Analysis (OBRA) of hyperspectral bathymetry method, and evaluated the performance in a domestic large river in normal turbid and flow condition. Maximum measurable depth was estimated by applying correlation coefficient and root mean square error (RMSE) produced during OBRA with cascadedly applying cut-off depth, where the consequent hyperspectral bathymetry map excluded the region over the derived maximum measurable depth. Also non-linearity was considered in building relation between optimal band and depth. We applied the method to the Nakdong and Hwang River confluence as a large river case and obtained the following features. First, the hyperspectal method showed acceptable performance in morphological mapping for shallow regions, where the maximum measurable depth was 2.5 m and 1.25 m in the Nakdong and Hwang river, respectively. Second, RMSE was more feasible to derive the maximum measurable depth rather than the conventional correlation coefficient whereby considering various scenario of excluding range of in situ depths for OBRA. Third, highly turbid region in Hwang River did not allow hyperspectral bathymetry mapping compared with the case of adjacent Nakdong River, where maximum measurable depth was down to half in Hwang River.

Feasibility Assessment on the Application of X-ray Computed Tomography on the Characterization of Bentonite under Hydration (벤토나이트 수화반응 특성화를 위한 X선 단층촬영 기술 적용성 평가)

  • Melvin B., Diaz;Gyung Won, Lee;Seohyeon, Yun;Kwang Yeom, Kim;Chang-soo, Lee;Minseop, Kim;Jin-Seop, Kim
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.491-501
    • /
    • 2022
  • Bentonite has been proposed as a buffer and backfill material for high-level radioactive waste repository. Under such repository environment conditions, bentonite is subjected to combined thermal, hydrological, mechanical, and chemical processes. This study evaluates the feasibility of applying X-ray CT technology on the characterization of bentonite under hydration conditions using a newly developed testing cell. The cylindrical cell is made of platic material, with a removable cap to place the sample, enabling to apply vertical pressure on the sample and to measure swelling pressure. The hydration test was carried out with a sample made of Gyeonju bentonite, with a dry density of 1.4 g/cm3, and a water content of 20%. The sample had a diameter of 27.5 mm and a height of 34 mm. During the test, water was injected at a constant pressure of 0.207 MPa, and lasted for 7 days. After one day of hydration, bentonite swelled and filled out the space inside the cell. Moreover, CT histograms showed how the hydration process induced an initial increase and later progressive decrease on the density of the sample. Detailed profiles of the mean CT value, CT standard deviation, and CT gradient provided more details on the hydration process of the sample and showed how the bottom and top regions exhibited a decrease on density while the middle region showed an increase, especially during the first two days of hydration. Later, the differences in CT values with respect to the initial state decreased, and were small at the end of testing. The formation and later reduction of cracks was also characterized through CT scanning.

Distyly and Population Size of Abeliophyllum distichum Nakai, an Endemic Plant in Korea (한국 특산식물 미선나무의 이화주성(Distyly) 및 개체군 크기)

  • So-Dam Kim;Ae-Ra Moon;Shin-Young Kwon;Seok-Min Yun;Hwi-Min Kim;Dong-Hyoung Lee;Sung-Won Son
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.6
    • /
    • pp.639-650
    • /
    • 2022
  • Abeliophyllum distichum Nakai, a rare plant with distylous characteristics, is native to certain parts of the Korean Peninsula. It is registered on the IUCN Red List of Threatened Species as a globally endangered plant. This study was conducted to establish an appropriate local conservation management plan suitable for future A. distichum populations by comparing and analyzing the flowering characteristics and population size according to distyly based on the results of quantitative surveys in 14 regions, including 8 areas with native populations of A. distichum and 6 natural monument populations. The number of individuals appearing in each population group was surveyed, and the flowering individuals were identified by style as being either pin or thrum flower types as they were being examined and recorded on the site. In total, 13,130 individuals of A. distichum (7,003 flowering and 6,127 non-flowering individuals) were recorded, but the balance of the number of pin- and thrum-flowered individuals in each population was not significant (p<0.05), indicating an imbalanced state. In particular, the Yeongdong (YD) population was very disproportionate compared to other populations, suggesting that its genetic diversity was low and the possibility of inbreeding was high. The average flowering and fruiting rates by management unit were much higher in the natural monument populations (89.2% and 55.3%, respectively) than in the natural habitat populations (39.0% and 8.5%, respectively). It may be due to a difference in reproductive growth resulting from light inflow into the forest caused by the upper crown closure. The area of occupation (AOO) of A. distichum on the Korean Peninsula covered an area of 23,224.5 m2. Although the natural monument population was smaller than the natural habitat population, its density was higher, likely as a result of the periodic management of natural monument populations, where the installation of protective facilities in certain areas restricts population spread. Conservation of A. distichum populations requires removing the natural monument populations suspected of anthropogenic and genetic disturbances and expanding the conservation priority population by designating new protected areas. Although the habitats of natural monument populations are managed by the Cultural Heritage Administration and local governments, there are no agencies that are responsible for managing natural habitat populations. Therefore, institutional improvement in the overall management of A. distichum should be prioritized.

Effect of temperature on oviposition of Spodoptera frugiperda (Lepidoptera: Noctuidae) and ovipositional characteristics in corn fields (온도가 열대거세미나방 산란에 미치는 영향 및 옥수수 포장에서의 산란 특성)

  • Hyung Cheol Moon;Min Kyung Choi;Su Ji Jang;Jang Ho Lee;Ju Hee Kim;Hyong Gwon Chon
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.3
    • /
    • pp.281-289
    • /
    • 2022
  • The effect of five different constant temperatures (18, 21, 24, 27, and 30±1℃) and a photoperiod of 14 : 10 (L :D) h on the reproduction parameters of Spodoptera frugiperda was studied. The longevity of adult female S. frugiperda decreased with increasing temperature (22.4 days at 21℃ and 13.9 days at 30℃) but not at 18℃. The pre-oviposition period and oviposition period was the shortest at 30℃ compared to the other temperatures. The total fecundity egg count was 887.4, 1,246.4, 1,348.9, 1,154.9, and 1,034.2 at 18, 21, 24, 27 and 30℃, respectively, during its life span. The survival rate of female S. frugiperda decreased rapidly after 13 days at 18℃, after 14 days at 21℃, after 15 days at 27℃, and after 9 days at 24℃, and 30℃. On the third day after the start of oviposition, 50% of the total fecundity was accomplished. In corn fields at less than the 10-leaf stage, the distribution of S. frugiperda egg masses was observed in the middle and lower plant regions, corresponding to 46.8% and 41.4% of the total egg masses, respectively. Egg masses were mostly found on the underside of the leaf blade (abaxial) of corn(66.7%). After releasing S. frugiperda adults on May 12, May 17, May 25, and May 30, the number of eggs per egg mass was 89.9, 88.5, 126.6, and 127.9, respectively. Egg masses of the subsequent generations of S. frugiperda were observed from late June, and the number of eggs per egg mass was 155.8 in late June, 270.7 in early July, and 303.5 in mid-July.

Development of disaster severity classification model using machine learning technique (머신러닝 기법을 이용한 재해강도 분류모형 개발)

  • Lee, Seungmin;Baek, Seonuk;Lee, Junhak;Kim, Kyungtak;Kim, Soojun;Kim, Hung Soo
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.4
    • /
    • pp.261-272
    • /
    • 2023
  • In recent years, natural disasters such as heavy rainfall and typhoons have occurred more frequently, and their severity has increased due to climate change. The Korea Meteorological Administration (KMA) currently uses the same criteria for all regions in Korea for watch and warning based on the maximum cumulative rainfall with durations of 3-hour and 12-hour to reduce damage. However, KMA's criteria do not consider the regional characteristics of damages caused by heavy rainfall and typhoon events. In this regard, it is necessary to develop new criteria considering regional characteristics of damage and cumulative rainfalls in durations, establishing four stages: blue, yellow, orange, and red. A classification model, called DSCM (Disaster Severity Classification Model), for the four-stage disaster severity was developed using four machine learning models (Decision Tree, Support Vector Machine, Random Forest, and XGBoost). This study applied DSCM to local governments of Seoul, Incheon, and Gyeonggi Province province. To develop DSCM, we used data on rainfall, cumulative rainfall, maximum rainfalls for durations of 3-hour and 12-hour, and antecedent rainfall as independent variables, and a 4-class damage scale for heavy rain damage and typhoon damage for each local government as dependent variables. As a result, the Decision Tree model had the highest accuracy with an F1-Score of 0.56. We believe that this developed DSCM can help identify disaster risk at each stage and contribute to reducing damage through efficient disaster management for local governments based on specific events.

Evaluation of Growth Characteristics and Yield Potential of Summer Emergency Forage Crops (하계 응급 조사료 자원의 생육특성 및 조사료 생산성 평가)

  • Park, Hyung Soo;Choi, Ki Choon;Yang, Seung Hak;Jung, Jeong Sung;Lee, Bae Hun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.1
    • /
    • pp.26-31
    • /
    • 2022
  • This study was carried out to evaluate the growth characteristics and forage yield potential for warm season grass as emergency forages. The experimental design was a randomized block design (RBD) with three replications. Two barnyard millet (Echinochloa species cv. Shirohie and Jeju native), a pearl millet (Pennisetum glaucum cv Feed milk 2) a proso millet (Panicum miliaceum cv Native), a teffgrass (Eragrostis tef cv. Tiffany) and a kleingrass (Panicum coloratum cv. Selection 75) were compared for forage production and quality at the Mid regions of Korea. Warm season forage crops were sown on May 21 and June 23 respectively, and in 2021, it was sown twice on May 21 and June 21 The number of days to seedling emergence for barnyard millet and teffgrass was observed approximately 10 and 3 days after seeding, respectively. The cultivation period from seeding to harvest was within 60 days for all entry spices except for the late-heading type barnyard millet (within 84 days). As for the dry matter yield by seeding date, the dry matter yield of the late-heading type barnyard millet in May seeding was the highest at 23,872 kg/ha, and the kleingrass was the lowest at 3,888 kg/ha. For the June seeding, the dry matter yield of the late-heading type barnyard millet was 17,032 kg/ha, the highest, and the proso millet, teffgrass and kleingrass showed the lowest at 5,468, 5,442, and 5,197 kg/ha, respectively. The crude protein (CP) content was varied by warm season grass species, but the early-heading type barnyard millet, teffgrass, and kleingrass showed the highest tendency, and the late-heading type barnyard millet showed the lowest at 5.7~5.9%. Neutral detergent fiber (NDF) and acid detergent fiber (ADF) content did not show a significant difference between the seeding in May, but kleingrass in June sowed lower than the others.