• 제목/요약/키워드: region extraction

검색결과 1,020건 처리시간 0.025초

비젼을 이용한 손 영역 특징 점 추출 (Feature Point Extraction of Hand Region Using Vision)

  • 정현석;주영훈
    • 전기학회논문지
    • /
    • 제58권10호
    • /
    • pp.2041-2046
    • /
    • 2009
  • In this paper, we propose the feature points extraction method of hand region using vision. To do this, first, we find the HCbCr color model by using HSI and YCbCr color model. Second, we extract the hand region by using the HCbCr color model and the fuzzy color filter. Third, we extract the exact hand region by applying labeling algorithm to extracted hand region. Fourth, after finding the center of gravity of extracted hand region, we obtain the first feature points by using Canny edge, chain code, and DP method. And then, we obtain the feature points of hand region by applying the convex hull method to the extracted first feature points. Finally, we demonstrate the effectiveness and feasibility of the proposed method through some experiments.

색상과 깊이정보를 융합한 의미론적 영상 분할 방법 (Color-Depth Combined Semantic Image Segmentation Method)

  • 김만중;강현수
    • 한국정보통신학회논문지
    • /
    • 제18권3호
    • /
    • pp.687-696
    • /
    • 2014
  • 본 논문은 사용자의 입력, 색상 및 깊이 정보를 이용한 의미론적 물체 분할 방법을 제안한다. 의미있는 영역을 깊이영상에서 유사한 깊이 정보와 사용자 스트로크 입력의 중심에 위치한다고 가정한다. 제안된 방법은 스트로크 입력을 이용하여 관심 영역을 설정하고, 색상과 깊이 정보를 이용하여 의미있는 영역을 검출한다. 구체적으로 제안방법은 관심영역에 대해 색상과 깊이 정보를 이용한 과분할 과정과 과분할 영역에 대해 깊이 정보를 이용한 의미론적 물체 추출과정으로 구성되어 있다. 과분할 과정에서 적응적 임계값 적용 및 형태학적 기울기에 대한 적응적인 가중치 적용을 통한 마커 추출 방법을 제안하였다. 의미론적 물체 추출과정에서는 관심영역의 가장자리 영역에서 내부 영역으로의 순서대로 전체 깊이의 평균과 차이를 이용하여 추출하고자 하는 물체 영역인지 아닌지를 결정하도록 하였다. 실험 결과에서 제안한 방법이 효과적으로 의미있는 물체 추출 결과를 얻을 수 있음을 보인다.

신경 회로망을 이용한 자궁 경부 세포진 영상의 영역 분할에 관한 연구 (A Study on Segmentation of Uterine Cervical Pap-Smears Images Using Neural Networks)

  • 김선아;김백섭
    • 대한의용생체공학회:의공학회지
    • /
    • 제22권3호
    • /
    • pp.231-239
    • /
    • 2001
  • This paper proposes a region segmenting method for the Pap-smear image. The proposed method uses a pixel classifier based on neural network, which consists of four stages : preprocessing, feature extraction, region segmentation and postprocessing. In the preprocessing stage, brightness value is normalized by histogram stretching. In the feature extraction stage, total 36 features are extracted from $3{\times}3$ or $5{\times}5$ window. In the region segmentation stage, each pixel which is associated with 36 features, is classified into 3 groups : nucleus, cytoplasm and background. The backpropagation network is used for classification. In the postprocessing stage, the pixel, which have been rejected by the above classifier, are re-classified by the relaxation algorithm. It has been shown experimentally that the proposed method finds the nucleus region accurately and it can find the cytoplasm region too.

  • PDF

영상 클러스터링에 의한 인쇄회로기판의 부품검사영역 자동추출 (Automatic Extraction of Component Inspection Regions from Printed Circuit Board by Image Clustering)

  • 김준오;박태형
    • 전기학회논문지
    • /
    • 제61권3호
    • /
    • pp.472-478
    • /
    • 2012
  • The inspection machine in PCB (printed circuit board) assembly line checks assembly errors by inspecting the images inside of the component inspection region. The component inspection region consists of region of component package and region of soldering. It is necessary to extract the regions automatically for auto-teaching system of the inspection machine. We propose an image segmentation method to extract the component inspection regions automatically from images of PCB. The acquired image is transformed to HSI color model, and then segmented by several regions by clustering method. We develop a modified K-means algorithm to increase the accuracy of extraction. The heuristics generating the initial clusters and merging the final clusters are newly proposed. The vertical and horizontal projection is also developed to distinguish the region of component package and region of soldering. The experimental results are presented to verify the usefulness of the proposed method.

일반화된 문자 및 비디오 자막 영역 추출 방법 (A Generalized Method for Extracting Characters and Video Captions)

  • 전병태;배영래;김태윤
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제27권6호
    • /
    • pp.632-641
    • /
    • 2000
  • 기존의 문자 영역 추출 방법은 전체 영상에 대하여 컬러 축소(color reduction), 영역 분할 및 합병(region split and merge), 질감 분석(texture analysis)등과 같은 방법을 이용하여 문자 영역을 추출했다. 이 방법들은 많은 휴우리스틱(heuristic) 변수와 추출하고자 하는 문자의 사전 지식에 의해 임계치 값을 설정함으로서 알고리즘을 일반화하기 어렵다는 문제점이 있다. 본 논문에서는 문자의 지형학적 특징점 추출 방법과 점-선-면 확장법을 이용하여 문자 영역을 추출함으로서 기존 문자 영역 추출의 문제점인 휴우리스틱 변수의 사용을 최소화하고 임계치 값을 일반화함으로 서 일반화된 문자 영역 추출 방법을 제안 하고자 한다. 실험결과 일반화된 변수와 임계값을 사용함으로서 문자의 사전 지식 없이도 문자 영역을 추출함을 볼 수 있었다. 비디오 영상의 경우 후보 영역 추출율 100%, 검증을 통한 자막 영역 추출율은 98% 이상임을 볼 수 있었다.

  • PDF

배경영상에서 유전자 알고리즘을 이용한 얼굴의 각 부위 추출 (Facial Feature Extraction using Genetic Algorithm from Original Image)

  • 이형우;이상진;박석일;민홍기;홍승홍
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 하계종합학술대회 논문집(4)
    • /
    • pp.214-217
    • /
    • 2000
  • Many researches have been performed for human recognition and coding schemes recently. For this situation, we propose an automatic facial feature extraction algorithm. There are two main steps: the face region evaluation from original background image such as office, and the facial feature extraction from the evaluated face region. In the face evaluation, Genetic Algorithm is adopted to search face region in background easily such as office and household in the first step, and Template Matching Method is used to extract the facial feature in the second step. We can extract facial feature more fast and exact by using over the proposed Algorithm.

  • PDF

투영 기법을 이용한 얼굴 영역 추출 알고리즘 (Face Region Extraction Algorithm Using Projection)

  • 임주혁;이준우;류권열;송근원
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 신호처리소사이어티 추계학술대회 논문집
    • /
    • pp.521-524
    • /
    • 2003
  • In this paper, we propose a face region extraction algorithm using color information and projection. After the extraction of face candidate image using adaptive color information, we project it into vertical direction to estimate the width of the face. Then the redundant parts of the face are efficiently removed by using the estimated face width. And the width information of the face is used at the horizontal projection step to extract the height of the face, and non-face region such as the neck and some background regions, which are represented as the similar skin color, effectively eliminated. From the experiment results for the various images, the proposed algorithm shows more accurate results than the conventional algorithm.

  • PDF

Text Location and Extraction for Business Cards Using Stroke Width Estimation

  • Zhang, Cheng Dong;Lee, Guee-Sang
    • International Journal of Contents
    • /
    • 제8권1호
    • /
    • pp.30-38
    • /
    • 2012
  • Text extraction and binarization are the important pre-processing steps for text recognition. The performance of text binarization strongly related to the accuracy of recognition stage. In our proposed method, the first stage based on line detection and shape feature analysis applied to locate the position of a business card and detect the shape from the complex environment. In the second stage, several local regions contained the possible text components are separated based on the projection histogram. In each local region, the pixels grouped into several connected components based on the connected component labeling and projection histogram. Then, classify each connect component into text region and reject the non-text region based on the feature information analysis such as size of connected component and stroke width estimation.

다층 신경망과 피부색 모델을 이용한 피부 영역 검출 (Skin Region Extraction Using Multi-Layer Neural Network and Skin-Color Model)

  • 박성욱;박종욱
    • 한국산업정보학회논문지
    • /
    • 제16권2호
    • /
    • pp.31-38
    • /
    • 2011
  • 피부색은 자동화된 얼굴 인식을 위한 매우 중요한 정보 중의 하나이다. 본 논문에서는 다층 신경망(Multi-Layer Perceptron)을 이용한 피부 영역 검출 기법을 제안하였다. 제안된 방법은 적응적 조명 보정 기법을 통해 피부색 영역의 검출 성능을 개선하였고, 전처리 필터를 적용하여 피부색이 아닌 영역을 먼저 제거시킴으로써 처리 속도를 향상시켰다. 제안된 방법의 실험 결과 기존의 방법과 비교하여 보다 우수한 검출 결과를 나타냈으며, 처리 속도 또한 약 31~49% 향상시킬 수 있었다.

음성인식을 위한 주파수 부대역별 효과적인 특징추출 (Effective Feature Extraction in the Individual frequency Sub-bands for Speech Recognition)

  • 지상문
    • 한국정보통신학회논문지
    • /
    • 제7권4호
    • /
    • pp.598-603
    • /
    • 2003
  • 본 논문에서는 주파수 부대역마다 최적의 특징추출을 위해서, 음성인식률을 기준으로 최적의 방법을 선택한다. 다중대역 음성인식 접근을 사용하여 각기 다른 주파수 영역에서 특징벡터를 독립적으로 추출함으로써 부대역별로 다른 특징추출 방법을 적용할 수 있었다. 저주파 대역의 음성은 비교적 스펙트럼의 구조가 명확하므로 전극모델을 사용하는 것이 효과적이었고, 고주파 대역에서는 비모수적인 변환방법인 이산 코사인 변환을 사용한 켑스트럼이 효과적이었다. 부대역별로 효과적인 특징추출 방법을 사용함으로써, 각 주파수 부대역에 포함된 음성인식을 위한 언어정보를 보다 효과적으로 추출할 수 있었다. 음성인식 실험결과, 제안한 방법은 전대역 특징추출보다 우수한 성능을 나타내었다.