• Title/Summary/Keyword: region contrast

Search Result 858, Processing Time 0.03 seconds

Physicochemical Analysis according to Temperature Changes of Iopamidol and Ioversol Formulation Contrast Agents (Iopamidol과 Ioversol 제제 조영제의 온도변화에 따른 물리화학적 분석)

  • Han, Beom-Hee
    • Journal of radiological science and technology
    • /
    • v.43 no.4
    • /
    • pp.273-280
    • /
    • 2020
  • In this study, the P contrast agent of Iopamidol, which is a nonionic iodide contrast agent most commonly used as a vascular contrast agent in medical institutions, and the O contrast agent of Ioversol, were studied. The physicochemical changes according to the temperature change were compared and analyzed using the Bruker Avance 500MHz Nuclear Magnetic Resonance Spectrometer owned by the Korea Basic Science Institute (KBSI). There was no physical or chemical change in the O contrast medium of Ioversol formulation in temperature change. However, in the P contrast agent of Iopamidol, a doublet peak began to appear in the 1.1 ppm region of the sample at 60℃, and the doublet peak was clearly observed in the sample at 80℃. As a result of this study, 1H-NMR analysis revealed that the P contrast agent of the Iopamidol formulation was dissociated from chemical bonds as it rose to a high temperature of 60℃ or higher, resulting in the formation of foreign substances. It was evaluated that the O contrast agent of Ioversol formulation had physico-chemical stability than the P contrast agent of Iopamidol formulation. As shown in this study, it is necessary to analyze the physical and chemical changes of contrast agents according to various environmental factors.

A building roof detection method using snake model in high resolution satellite imagery

  • Ye Chul-Soo;Lee Sun-Gu;Kim Yongseung;Paik Hongyul
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.241-244
    • /
    • 2005
  • Many building detection methods mainly rely on line segments extracted from aerial or satellite imagery. Building detection methods based on line segments, however, are difficult to succeed in high resolution satellite imagery such as IKONOS imagery, for most buildings in IKONOS imagery have small size of roofs with low contrast between roof and background. In this paper, we propose an efficient method to extract line segments and group them at the same time. First, edge preserving filtering is applied to the imagery to remove the noise. Second, we segment the imagery by watershed method, which collects the pixels with similar intensities to obtain homogeneous region. The boundaries of homogeneous region are not completely coincident with roof boundaries due to low contrast in the vicinity of the roof boundaries. Finally, to resolve this problem, we set up snake model with segmented region boundaries as initial snake's positions. We used a greedy algorithm to fit a snake to roof boundary. Experimental results show our method can obtain more .correct roof boundary with small size and low contrast from IKONOS imagery. Snake algorithm, building roof detection, watershed segmentation, edge-preserving filtering

  • PDF

Salient Region Extraction based on Global Contrast Enhancement and Saliency Cut for Image Information Recognition of the Visually Impaired

  • Yoon, Hongchan;Kim, Baek-Hyun;Mukhriddin, Mukhiddinov;Cho, Jinsoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.5
    • /
    • pp.2287-2312
    • /
    • 2018
  • Extracting key visual information from images containing natural scene is a challenging task and an important step for the visually impaired to recognize information based on tactile graphics. In this study, a novel method is proposed for extracting salient regions based on global contrast enhancement and saliency cuts in order to improve the process of recognizing images for the visually impaired. To accomplish this, an image enhancement technique is applied to natural scene images, and a saliency map is acquired to measure the color contrast of homogeneous regions against other areas of the image. The saliency maps also help automatic salient region extraction, referred to as saliency cuts, and assist in obtaining a binary mask of high quality. Finally, outer boundaries and inner edges are detected in images with natural scene to identify edges that are visually significant. Experimental results indicate that the method we propose in this paper extracts salient objects effectively and achieves remarkable performance compared to conventional methods. Our method offers benefits in extracting salient objects and generating simple but important edges from images containing natural scene and for providing information to the visually impaired.

Influence of Iodinated Magnetic Resonance Contrast Media and Isotope 99mTc on Changes of Computed Tomography Number

  • Kim, Sang-Beom;Lee, Jin-Hyeok;Ahn, Jae-Ouk;Cho, Jae-Hwan
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.302-307
    • /
    • 2015
  • The purpose of the study was to identify how isotope and magnetic resonance imaging (MRI) contrast media impact on noise to computed tomography (CT) examination. For the study, divide the phantoms to two groups: 1) saline, saline + different kinds of contrast agent without $^{99m}Tc$ administration; 2) $^{99m}Tc$ administration: saline, saline + different kinds of contrast agent with $^{99m}Tc$ administration. CT contrast agent was used for Iopamidol$^{(R)}$ and Dotarem. And MRI contrast agent was used for Primovist$^{(R)}$ and Gadovist$^{(R)}$. To obtain an image, we used CT scanner. With an obtained image, we set the $1cm^2$ region of interest in the middle of bottle to measure the noise and CT number. As a result, there was no difference in CT number before and after inserting $^{99m}Tc$ into all contrast media including Normal Saline. However, when it comes to Noise, there was a difference before and after inserting $^{99m}Tc$ into every contrast media except MRI contrast media such as Primovist$^{(R)}$ and Gadovist$^{(R)}$.

조영제 사용 전${\cdot}$후 불균질 조직 보정 알고리즘에 따른 선량변화에 대한 연구

  • Kim, Ju-Ho;Jo, Jeong-Hui;Lee, Seok;Jeon, Byeong-Cheol;Park, Jae-Il
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.13 no.1
    • /
    • pp.38-46
    • /
    • 2001
  • Purpose : The aim of this study is to investigate the effect of tissue inhomogeneities when appling to contrast medium among Homogeneous, Batho and ETAR dose calculation method in RTP system. Method and Material : We made customized heterogeneous phantom it filled with water or contrast medium slab. Phantom scan data have taken PQ 5000 (CT scanner, Marconi, USA) and then dose was calculated in 3D RTP (AcQ-Plan, Marconi, USA) depends on dose calculation algorithm (Homogeneous, Batho, ETAR). The dose comparisons were described in terms of 2D isodose distribution, percent depth dose data, effective path length and monitor unit. Also dose distributions were calculated with homogeneous and inhomogeneous correction algorithm, Batho and ETAR, in each patients with different clinical sites. Results : Result indicated that Batho and ETAR method gave rise to percent depth dose deviation $1.5{\sim}2.7\%,\;2.3{\sim}3.5\%$ (6MV, field size $10{\times}10cm^2$) in each status with and without contrast medium. Also show that effective path lengths were more increase in contrast status (23.14 cm) than Non-contrast (22.07 cm) about $4.9\%$ or 10.7 mm (In case Hounsfield Unit 270) and these results were similary showned in each patient with different clinical site that was lung. prostate, liver and brain region. Concliusion : In conclusion we shown that the use of inhomogeneity correction algorithm for dose calculation in status of injected contrast medium can not represent exact dose at GTV region. These results mean that patients will be more irradiated photon beam during radiation therapy.

  • PDF

Spatial Manipulation of Sound using Multiple Sources (다수의 음원을 사용한 공간의 소리 제어 방법론)

  • Choi, Joung-Woo;Kim, Yang-Hann;Park, Young-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.620-628
    • /
    • 2005
  • Spatial control of sound is essential to deliver better sound to the listener's position in space. As it can be experienced in many listening environments, the quality of sound can not be manifested over every position in a hall. This motivates us to control sound in a region we select. The primary focus of the developed method has to do with the brightness and contrast of acoustic image in space. In particular, the acoustic brightness control seeks a way to increase loudness of sound over a chosen area, and the contrast control aims to enhance loudness difference between two neighboring regions. This enables us to make two different kinds of zone - the zone of quiet and the zone of loud sound - at the same time. The other perspective of this study is on the direction of sound. It is shown that we can control the direction of perceived sound source by focusing acoustic energy in wavenumber domain. To begin with, the proposed approaches are formulated for pure-tone case. Then the control methods are extended to a more general case, where the excitation signal has broadband spectrum. In order to control the broadband signal in time domain, an inverse filter design problem is defined and solved in frequency domain. Numerical and experimental results obtained in various conditions certainly validate that the acoustic brightness, acoustic contrast, direction of wave front can be manipulated for some finite region in space and time.

  • PDF

Classification of Tumor cells in Phase-contrast Microscopy Image using Fourier Descriptor (위상차 현미경 영상 내 푸리에 묘사자를 이용한 암세포 형태별 분류)

  • Kang, Mi-Sun;Lee, Jeong-Eom;Kim, Hye-Ryun;Kim, Myoung-Hee
    • Journal of Biomedical Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.169-176
    • /
    • 2012
  • Tumor cell morphology is closely related to its migratory behaviors. An active tumor cell has a highly irregular shape, whereas a spherical cell is inactive. Thus, quantitative analysis of cell features is crucial to determine tumor malignancy or to test the efficacy of anticancer treatment. We use 3D time-lapse phase-contrast microscopy to analyze single cell morphology because it enables to observe long-term activity of living cells without photobleaching and phototoxicity, which is common in other fluorescence-labeled microscopy. Despite this advantage, there are image-level drawbacks to phase-contrast microscopy, such as local light effect and contrast interference ring. Therefore, we first corrected for non-uniform illumination artifacts and then we use intensity distribution information to detect cell boundary. In phase contrast microscopy image, cell is normally appeared as dark region surrounded by bright halo ring. Due to halo artifact is minimal around the cell body and has non-symmetric diffusion pattern, we calculate cross sectional plane which intersects center of each cell and orthogonal to first principal axis. Then, we extract dark cell region by analyzing intensity profile curve considering local bright peak as halo area. Finally, we calculated the Fourier descriptor that morphological characteristics of cell to classify tumor cells into active and inactive groups. We validated classification accuracy by comparing our findings with manually obtained results.

Image characteristics of cone beam computed tomography using a CT performance phantom (CT performance phantom을 이용한 cone beam형 전산화단층영상의 특성)

  • Han, Choong-Wan;Kim, Gyu-Tae;Choi, Yong-Suk;Hwang, Eui-Hwan
    • Imaging Science in Dentistry
    • /
    • v.37 no.3
    • /
    • pp.157-163
    • /
    • 2007
  • Purpose: To evaluate the characteristics of (widely used) cone beam computed tomography (CBCT) images. Materials and Methods: Images were obtained with CT performance phantoms (The American Association of Physicists in Medicine; AAPM). CT phantom as the destination by using PSR $9000N^{TM}$ dental CT system (Asahi Roentgen Ind. Co., Ltd., Japan) and i-CAT CBCT (Imaging Science International Inc., USA) that have different kinds of detectors and field of view, and compared these images with the CT number for linear attenuation, contrast resolution, and spatial resolution. Results: CT number of both PSR $9000N^{TM}$ dental CT system and i-CAT CBCT did not conform to the base value of CT performance phantom. The contrast of i-CAT CBCT is higher than that of PSR $9000N^{TM}$ dental CT system. Both contrasts were increased according to thickness of cross section. Spatial resolution and shapes of reappearance was possible up to 0.6 mm in PSR $9000N^{TM}$ dental CT system and up to 1.0 mm in i-CAT CBCT. Low contrast resolution in region of low contrast sensitivity revealed low level at PSR $9000N^{TM}$ dental CT system and i-CAT CBCT. Conclusion: CBCT images revealed higher spatial resolution, however, contrast resolution in region of low contrast sensitivity was the inferiority of image characteristics.

  • PDF

An Adaptive Thresholding of the Nonuniformly Contrasted Images by Using Local Contrast Enhancement and Bilinear Interpolation (국소 영역별 대비 개선과 쌍선형 보간에 의한 불균등 대비 영상의 효율적 적응 이진화)

  • Jeong, Dong-Hyun;Cho, Sang-Hyun;Choi, Heung-Moon
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.12
    • /
    • pp.51-57
    • /
    • 1999
  • In this paper, an adaptive thresholding of the nonuniformly contrasted images is proposed through using the contrast pre-enhancement of the local regions and the bilinear interpolation between the local threshold values. The nonuniformly contrasted image is decomposed into 9${\times}$9 sized local regions, and the contrast is enhanced by intensifying the gray level difference of each low contrasted or blurred region. Optimal threshold values are obtained by iterative method from the gray level distribution of each contrast-enhanced local region. Discontinuities are reduced at the region of interest or at the characters by using bilinear interpolation between the neighboring threshold surfaces. Character recognition experiments are conducted using backpropagation neural network on the characters extracted from the nonuniformly contrasted document, PCB, and wafer images binarized through using the proposed thresholding and the conventional thresholding methods, and the results prove the relative effectiveness of the proposed scheme.

  • PDF

A Study on the Reduction of Exposure Dose and Contrast Improvement by Use of Heavy Elements Filter (X선 진단영역에서 중원소(Ho) 여과판 사용에 따른 피폭선량 감소와 대조도 개선에 관한 연구)

  • Kim, Young-Keun
    • Journal of radiological science and technology
    • /
    • v.23 no.1
    • /
    • pp.91-96
    • /
    • 2000
  • This work was on the reduction of exposure dose and contrast improvement by Use of Heavy Elements Filter From the result of experimental evaluation, it was found that the beam harding of X-ray was not showed in Ho and Gd, heavy elements filters, contrast to Cu and Al filters In which the harding showed. And the ratio of transit dose to surface dose and the load of X-ray tube increase in order of Al, Cu, Gd and Ho, respectively. The contrast of X-ray images using the intensifying screen and the input phosphor showed the higher value in order of Cu, Al, Gd and Ho. Therefore, in the case of using contrast media and phosphor in region of diagnostic radiology, X-ray image quality depends primarily on kVp and heavy elements filters.

  • PDF