• Title/Summary/Keyword: regenerator

Search Result 146, Processing Time 0.023 seconds

Simulation on CO2 capture process using an Aqueous MEA solution (MEA 흡수제를 이용한 이산화탄소 포집 공정 모사)

  • Woo, Dae-Sik;Nam, Sung-Chan;Jeong, Soon-Kwan;Yoon, Yeo-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.1
    • /
    • pp.431-438
    • /
    • 2012
  • The $CO_2$ capture technology using an aqueous amine solution is studied widely now. The entire process consists of an absorber to remove carbon dioxide selectively and a regenerator to regenerate absorbent and acquire pure carbon dioxide. Because there are the complicated design variables that affect performance of the process, it needs optimization and analysis through modeling to make a commercially reliable process. In this study, the decomposition method was proposed to consider convergence problem and sensitivity analysis was executed for the carbon dioxide capture process variables. Non-equilibrium model was used in the simulation to get more realistic results and we designed optimized process with more than 95% purity and 90% recovery.

A Stability Study of Rider Arch under the Increased Load of Checker Brick in Regernerator of the Reformed Glass Melting Furnace (유리 용해로 축열실 상재 하중 증가에 따른 Rider Arch의 안전성 검토)

  • Lee, Sun-Yung;Kim, Jong-Ock;Lim, Dae-Young;Kim, Taik-Nam;Park, Won-Kya
    • The Journal of Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.125-131
    • /
    • 1997
  • The regenerator is important part of the glass melting furnace to increase the temperature of the intake air through the combustion flame. The insulation, checker brick, prevention of the air leak has been studied to decrease the fuel consumption in glass melting industries. Thus the new types of checker brick and the design of the rider arch has been studied to prolong the life of the glass melting furnace. The height of the regenerator increased from 5.64 m to 7.89 m in the reforming of the glass melting furnace. Thus the stability of the rider arch is studied under the condition of increased load of checker brick in this research. The rider arch was estimated to be stable inspite of the increase of load according to the calculation. The max. sustained compressive stress of the rider arch is 163 kg/$cm^2$ and the max. sustained shear stress is 6.37 kg/$cm^2$.

  • PDF

Modeling, simulation and structural analysis of a fluid catalytic cracking (FCC) process

  • Kim, Sungho;Urm, Jaejung;Kim, Dae Shik;Lee, Kihong;Lee, Jong Min
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2327-2335
    • /
    • 2018
  • Fluid catalytic cracking (FCC) is an important chemical process that is widely used to produce valuable petrochemical products by cracking heavier components. However, many difficulties exist in modeling the FCC process due to its complexity. In this study, a dynamic process model of a FCC process is suggested and its structural observability is analyzed. In the process modeling, yield function for the kinetic model of the riser reactor was applied to explain the product distribution. Hydrodynamics, mass balance and energy balance equations of the riser reactor and the regenerator were used to complete the modeling. The process model was tested in steady-state simulation and dynamic simulation, which gives dynamic responses to the change of process variables. The result was compared with the measured data from operating plaint. In the structural analysis, the system was analyzed using the process model and the process design to identify the structural observability of the system. The reactor and regenerator unit in the system were divided into six nodes based on their functions and modeling relationship equations were built based on nodes and edges of the directed graph of the system. Output-set assignment algorithm was demonstrated on the occurrence matrix to find observable nodes and variables. Optimal locations for minimal addition of measurements could be found by completing the whole output-set assignment algorithm of the system. The result of this study can help predict the state more accurately and improve observability of a complex chemical process with minimal cost.

Study of Hydrodynamics and Reaction Characteristics of K-based Solid Sorbents for CO2 Capture in a Continuous System Composed of Two Bubbling Fluidized-bed Reactors (두 개의 기포유동층으로 구성된 연속장치에서 CO2 회수를 위한 K-계열 고체흡수제의 수력학적 특성 및 반응특성)

  • Kim, Ki-Chan;Kim, Kwang-Yul;Park, Young Cheol;Jo, Sung-Ho;Ryu, Ho-Jung;Yi, Chang-Keun
    • Korean Chemical Engineering Research
    • /
    • v.48 no.4
    • /
    • pp.499-505
    • /
    • 2010
  • In this study, hydrodynamics and reaction characteristic of K-based solid sorbents for $CO_2$ capture were investigated using a continuous system composed of two bubbling fluidized-bed reactors(1.2 m tall bed with 0.11 m i.d.). Potassium-based dry sorbents manufactured by the Korea Electric Power Research Institute were used, which were composed of $K_2CO_3$ of 35% for $CO_2$ absorption and supporters of 65% for mechanical strength. The continuous system consists of two bubbling fluidized-bed reactors, solid injection nozzle, riser, chiller, analyzer and heater for regeneration reaction. The minimum fluidizing velocity of the continuous system was 0.0088 m/s and the solid circulation rate measured was $10.3kg/m^2{\cdot}s$ at 1.05 m/s velocity of the solid injection nozzle. The $CO_2$ concentration of the simulated gas was about 10 vol% in dry basis. Reaction temperature in carbonator and regenerator were maintained about $70^{\circ}C$ and $200^{\circ}C$, respectively. Differential pressures, which were maintained in carbonator and regenerator, were about $415mmH_2O$ and $350mmH_2O$, respectively. In order to find out reaction characteristics of dry sorbents, several experiments were performed according to various experimental conditions such as $H_2O$ content(7.28~19.66%) in feed gas, velocity (0.053~0.103 m/s) of simulated gas, temperature($60{\sim}80^{\circ}C$) of a carbonator, temperature($150{\sim}200^{\circ}C$) of a regenerator and solid circulation rate($7.0{\sim}10.3kg/m^2{\cdot}s$). The respective data of operating variables were saved and analyzed after maintaining one hour in a stable manner. As a result of continuous operation, $CO_2$ removal tended to increase by increasing $H_2O$ content in feed gas, temperature of a regenerator and solid circulation rate and to decrease by increasing temperature of a carbonator and gas velocity in a carbonator.

A Third-order analysis of VM heat pumps (VM 열펌프의 3차해석)

  • Kang, Y.G.;Jeong, E.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.2
    • /
    • pp.229-238
    • /
    • 1997
  • A third-order simulation model of VM heat pumps has been developed. This model allows consideration of the major losses such as heat conduction losses through regenerators and displacers, pumping losses and wall-to-gas heat transfer losses in working volumes, in addition to the heat exchanger and regenerator losses. The working volume was divided into 12 control volumes and conservation equations of mass and energy were applied to each control volume. Pressure drop was considered in regenerators only. Thermodynamic behavior of working fluid in a VM heat pump was investigated and effects of major losses on the performance of a VM heat pump were shown.

  • PDF

Schmidt cycle analysis in the quest of designing stirling cryocooler

  • Chowdhury, Debajyoti Roy;Chakraborty, Nathuram;Sarkar, Swapan Chandra
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.4
    • /
    • pp.12-17
    • /
    • 2017
  • Design of Reverse Stirling Cycle based refrigerator can be predicted by Schmidt theory as a useful tool and by experiment it is found that for practical purposes the power and efficiency predicted by this analysis are about 35% of the actual values. Therefore, appropriate provision is to be made for getting the realistic result with the minimum deviation. The present paper first investigates the suitability of application of Schmidt design analysis for standard ZIF-1002 and PLN-106 Single cylinder Cryogenerator model. As the result is found to be optimistic, the same design procedure is applied for the design of a separate Cryogenerator for generating a cooling effect which is sufficient to produce 7 kg per hour liquid nitrogen using an indigenous condenser of 80% effectiveness. The paper describes all the details of the design methodologies and relevant results are found to be satisfactory.

The Cycle Analysis of 4 Valve-type Pulse Tube Refrigerator (4 밸브형 맥동관 냉동기의 사이클 해석)

  • Cho, Kyung-Chul;Lee, Sang-Won;Lim, Young-Hun;Kim, Soo-Yun;Jung, Pyung-Suk
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.636-641
    • /
    • 2001
  • In this paper, we constructed four valve type pulse tube refrigerator and found the characteristic of orifice (needle valve) opening for using phase shifter and optimum cycle time - The valve timing was controlled by the digital timers. The experimental results showed the optimum frequence and cycle time at operating conditions. The results showed that the optimum process time existed and the rate was same at each operating frequence. The no- load temperature of the refrigerator was 85K.

  • PDF

A Second-Order Analysis of VM Heat Pumps (VM열펌프의 2차해석)

  • Choi, Y.S.;Jeong, E.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.2
    • /
    • pp.208-218
    • /
    • 1996
  • Performance of a VM heat pump is considerably affected by various losses, such as enthalpy dump, reheat loss, pumping loss, conduction loss and shuttle loss. A second-order analysis model of VM heat pumps, which allows consideration of the major losses, was presented. Actual heat transfer rates for heat exchangers were calculated from the heat transfer rates obtained by the adiabatic analysis and various losses. New effective temperatures of heat exchangers were calculated from the actual heat transfer rates and the mean heat transfer coefficients until there was no appreciable change in the effective temperatures. Effects of design parameters, such as phase angle, swept volume ratio, regenerator length and speed on heating capacity, cooling capacity and COP were shown.

  • PDF

Experimental Study on Mass Transfer Rate at the Packed Column of Solar Cooling Liquid Desiccant System Using Counter Flow Configuration

  • Hengki R, R.;Choi, K.H.;Yohana, Eflita;Sukmaji, I.C.;Kim, J.R.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.155-161
    • /
    • 2009
  • Desiccant systems have been proposed as energy saving alternatives to vapor compression air conditioning for handling the latent load. Use of liquid desiccants offers several design and performance advantages over solid desiccants, especially when solar energy is used for regeneration. The liquid desiccants contact the gas inside the packed column and the heat transfer and mass transfer will occur. This proposal is try study the mass transfer and heat transfer inside the packed column of dehumidifier and regenerator systems. And later on, the rates of dehumidification and regeneration that were affected by desiccant flow rates, air temperature and humidity, and desiccant temperature and all that variation will influence the performance of the systems.

  • PDF

Study of Stirling Cryocooler Performance with Different Operating Frequency (작동주파수에 따른 스터링 극저온 냉동기의 특성에 관한 연구)

  • 박성제;홍용주;고득용;김효봉;오군섭;김종학
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.159-162
    • /
    • 2001
  • A Stirling cryocooler is relatively compact, reliable, commercially available, and uses helium as a working fluid. The FPFD stirling cryocooler consists of two compressor pistons driven by linear motors which makes pressure waves and a pneumatically driven displacer piston with regenerator. It is the most suitable design for a mechanical cryocooler utilized in night vision environment. In order to get optimum operating frequency, natural frequency of piston and displacer, optimum phase angle between piston and displacer, cooling capacity, performance tests of the Stirling cryocooler by the frequency characteristics were performed.

  • PDF