• Title/Summary/Keyword: regenerator

Search Result 146, Processing Time 0.031 seconds

An Experimental Study of the 2-stage Gifford-McMahon Cryorefrigerator (2단 Gifford-McMahon 극저온냉동기의 특성실험)

  • Park, S.J.;Koh, D.Y.;Yoo, C.J.;Kim, E.J.;Choi, H.O.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.3
    • /
    • pp.198-206
    • /
    • 1993
  • Experimental results of two stage Gifford-McMahon cryorefrigerator are described. In-prototype experiments, drive mechanism is Scotch Yoke type driven by stepping motor, copper meshes and lead balls are used for regenerator's materials in the first stage and the second stage, respectively. To find optimal conditions of the cryopump, no load temperature and refrigeration capacity according to the variation of cycle frequency and operating pressure are measured, and the cool down and load characteristics at particular cycle frequencies are presented. In general, as the cycle frequency is lowered, no load temperature is dropped but refrigeration capacity is diminished. As the representative result, in a case that the cycle frequency is 70rpm and steady state pressure is 14 atm, no load temperature of second stage is lowered to 10.5K in 55 minuters, and in this situation the refrigeration capacity of the first stage is 42W at 80K, that of the second stage is 11 W at 20K.

  • PDF

An Experimental Study on Performance of the Inertance Pulse Tube Refrigerator using a Small Compressor (소형 압축기를 이용한 관성관형 맥동관 냉동기의 성능 특성에 대한 실험적 연구)

  • Kim Hongseong;Jeong Sangkwon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.6
    • /
    • pp.552-559
    • /
    • 2005
  • This paper describes an experimental study on the inertance pulse tube refrigerator using a small compressor. The purpose of this experimental study is to identify the performance of the inertance pulse tube refrigerator for various operating conditions and to obtain the optimum configuration. The dead volume effect is verified by two experimental apparatuses with different dead volumes between the compressor and the aftercooler. The refrigerator of the smaller dead volume shows better performance. The influence of operating frequency and charging pressure on the performance of the refrigerator is experimentally investigated. Reducing the regenerator mesh size improves the performance of the refrigerator. Finally, the inertance pulse tube refrigerator has maximum cooling capacity at the specific combination of the pulse tube length and the inertance tube length. The loss analysis is used to analyze and predict the optimum condition of the pulse tube refrigerator.

Experimental research on 2 stage GM-type pulse tube refrigerator for cryopump

  • Park, Seong-Je;Ko, Jun-Seok;Hong, Yong-Ju;Kim, Hyo-Bong;Yeom, Han-Kil;Koh, Deuk-Yong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.2
    • /
    • pp.29-33
    • /
    • 2010
  • The experimental results of the 2 stage Gifford-McMahon(GM) type pulse tube refrigerator (PTR) or cryopump are presented in this paper. The objectives of his study are to develop design technology of the integral type 2 stage PTR which rotary valve is directly connected to he hot end of the regenerator and acquire its improved performance. Design of the 2 stage PTR is conducted by FZKPTR(Forschungs Zentrum Karlsruhe Pulse Tube Refrigerator) program for the design of pulse tube refrigerators. The fabricated PTR has U-type configuration and incorporates orifice valve, double-inlet valve and reservoir as phase control mechanism. Rotary valve is used to make pulsating pressure and is directly connected to inlet of $1^{st}$ stage regenerator. From experiments, cooling performance map and pressure waveform at each point were measured for different operating frequencies. Experimental results show the best cooling performance with 2 Hz operation in spite of small pressure amplitude. The lowest temperatures of the 2 stage PTR were 16.9 K at the second stage and 58.0 K at the first stage. The cooling capacities achieved were 14.4 W at 79 K, the first stage and 3.6 W at 29 K, the second stage.

Performance analysis of an organic Rankine cycle for ocean thermal energy conversion system according to the working fluid and the cycle (작동유체 및 사이클에 따른 해양온도차발전용 유기랭킨사이클의 성능분석)

  • Kim, Jun-Seong;Kim, Do-Yeop;Kim, You-Taek;Kang, Ho-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.881-889
    • /
    • 2015
  • Ocean thermal energy conversion is an organic Rankine cycle that generates power using the temperature difference between surface water and deep water. This study analyzes the thermodynamic efficiency of the cycle, which strongly depends on the working fluid and the cycle configuration. Cycles studied included the classical simple Rankine cycle, Rankine cycles with an open feedwater heater and an integrated regenerator, as well as the Kalina cycle. Nine kinds of simple refrigerants and three kinds of mixed refrigerants were investigated as the working fluids in this study. Pinch-point analysis that set a constant pinch-point temperature difference was applied in the performance analysis of the cycle. Results showed that thermodynamic efficiency was best when RE245fa2 was used as the working fluid with the simple Rankine cycle, the Rankine cycles with an open feedwater heater and an integrated regenerator, and when the mixing ratio of $NH_3/H_2O$ was 0.9:0.1 in the Kalina cycle. If the Rankine cycles with an open feedwater heater, an integrated regenerator, and the Kalina cycle were used for ocean thermal energy conversion, efficiency increases could be expected to be approximately 2.0%, 1.0%, and 10.0%, respectively, compared to the simple Rankine cycle.

A Model on a Bubbling Fluidized Bed Process for CO2 Capture from Flue Gas (연소기체로부터 CO2를 포집하는 기포 유동층 공정에 관한 모델)

  • Choi, Jeong-Hoo;Youn, Pil-Sang;Kim, Ki-Chan;Yi, Chang-Keun;Jo, Sung-Ho;Ryu, Ho-Jung;Park, Young-Cheol
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.516-521
    • /
    • 2012
  • This study developed a simple model to investigate effects of important operating parameters on performance of a bubbling-bed adsorber and regenerator system collecting $CO_2$ from flue gas. The chemical reaction rate was used with mean particles residence time of a reactor to determine the extent of conversion in both adsorber and regenerator reactors. Effects of process parameters - temperature, gas velocity, solid circulation rate, moisture content of feed gas - on $CO_2$ capture efficiency were investigated in a laboratory scale process. The $CO_2$ capture efficiency decreased with increasing temperature or gas velocity of the adsorber. However, it increased with increasing the moisture content of the flue gas or the regenerator temperature. The calculated $CO_2$ capture efficiency agreed to the measured value reasonably well. However the present model did not agree well to the effect of the solid circulation rate on $CO_2$ capture efficiency. Better understanding on contact efficiency between gas and particles was needed to interpret the effect properly.

An Experimental Study of a Therr Buffer Pulse Tube Refrigerator (Three Buffer 맥동관 냉동기에 관한 실험적 연구)

  • 박성재;고득용;김효봉;신완순
    • Progress in Superconductivity and Cryogenics
    • /
    • v.1 no.2
    • /
    • pp.54-59
    • /
    • 1999
  • An experimental study was carried out to improve the cooling capacity and performance of the pulse tube refrigerator. Three buffer pulse tube refrigerator was designed and fabricated, and the experimental apparatus operating process of the therr buffer pulse tube refrigerator and results obtained with the performance test. The cooldown characteristics and load characteristics are described. The lowest temperature measured in the three buffer pulse tube refrigerator was 88K and the cooling capacity at the optimum operating condition was 27 W at 120K.

  • PDF

Basic Simulation for Vuilleumier Cycle Heat Pump (VM사이클 히트펌프 기초 설계프로그램)

  • Park, Byung-Duck
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.3
    • /
    • pp.265-273
    • /
    • 2000
  • Basic simulation program for Vuilleumier cycle heat pump was developed that can use precise VMHP design and analysis. VMHP system was divided 11 sections in simulation. Simulation was used adiabatic model analysis and that considered with heat transfer performance for heat exchanger, regenerator loss, conduction loss, shuttle loss, pumping loss and pressure loss by flow friction. Specially, friction loss of connection pipe between heat compression side and heat pump side, leakage of rod seal and piston seal was considered in the analysis.

  • PDF