• 제목/요약/키워드: regeneration of periodontal tissue

검색결과 378건 처리시간 0.022초

A randomized controlled clinical study of periodontal tissue regeneration using an extracellular matrix-based resorbable membrane in combination with a collagenated bovine bone graft in intrabony defects

  • Kim, Sulhee;Chang, Hyeyoon;Hwang, Jin wook;Kim, Sungtae;Koo, Ki-Tae;Kim, Tae-Il;Seol, Yang-Jo;Lee, Yong-Moo;Ku, Young;Lee, Jong-Ho;Rhyu, In-Chul
    • Journal of Periodontal and Implant Science
    • /
    • 제47권6호
    • /
    • pp.363-371
    • /
    • 2017
  • Purpose: The purpose of this study was to investigate the feasibility of regenerative therapy with a collagenated bone graft and resorbable membrane in intrabony defects, and to evaluate the effects of the novel extracellular matrix (ECM)-based membrane clinically and radiologically. Methods: Periodontal tissue regeneration procedure was performed using an ECM-based resorbable membrane in combination with a collagenated bovine bone graft in intrabony defects around the teeth and implants. A novel extracellular matrix membrane (NEM) and a widely-used membrane (WEM) were randomly applied to the test group and the control group, respectively. Cone-beam computed tomography images were obtained on the day of surgery and 6 months after the procedure. Alginate impressions were taken and plaster models were made 1 week and 6 months postoperatively. Results: The quantity of bone tissue, the dimensional changes of the surgically treated intrabony defects, and the changes in width and height below the grafted bone substitutes showed no significant difference between the test and control groups at the 6-month examination. Conclusions: The use of NEM for periodontal regeneration with a collagenated bovine bone graft showed similar clinical and radiologic results to those obtained using WEM.

Soft and Hard Tissue Augmentation with/without Polydeoxyribonucleotide for Horizontal Ridge Deficiency: A Pilot Study in a Dog Model

  • Hyunwoo Lim;Yeek Herr;Jong-Hyuk Chung;Seung-Yun Shin;Seung-Il Shin;Ji-Youn Hong;Hyun-Chang Lim
    • Journal of Korean Dental Science
    • /
    • 제17권2호
    • /
    • pp.53-63
    • /
    • 2024
  • Purpose: To investigate the effects of simultaneous soft and hard tissue augmentation and the addition of polydeoxyribonucleotide (PDRN) on regenerative outcomes. Materials and Methods: In five mongrel dogs, chronic ridge defects were established in both mandibles. Six implants were placed in the mandible, producing buccal dehiscence defects. The implants were randomly allocated to one of the following groups: 1) control: no treatment; 2) GBR: guided bone regeneration (GBR) only; 3) GBR/PDRN: GBR+PDRN application to bone substitute particles; 4) GBR/CTG: GBR+connective tissue grafting (CTG); 5) GBR/VCMX: GBR+soft tissue augmentation using volume stable collagen matrix (VCMX); and 6) group GBR/VCMX/PDRN: GBR+VCMX soaked with PDRN. The healing abutments were connected to the implants to provide additional room for tissue regeneration. Submerged healing was achieved. The animals were euthanized after four months. Histological and histomorphometric analyses were then performed. Results: Healing abutments were gradually exposed during the healing period. Histologically, minimal new bone formation was observed in the dehiscence defects. No specific differences were found between the groups regarding collagen fiber orientation and density in the augmented area. No traces of CTG or VCMX were detected. Histomorphometrically, the mean tissue thickness was greater in the control group than in the other groups above the implant shoulder (IS). Below the IS level, the CTG and PDRN groups exhibited more favorable tissue thickness than the other groups. Conclusion: Failure of submerged healing after tissue augmentation deteriorated the tissue contour. PDRN appears to have a positive effect on soft tissues.

수종의 재생 술식 시행이 매식체 근원심부의 골재생에 미치는 영향 (The Effects of various Regeneration techniques on Bone Regeneration around Dental Implant)

  • 이명자;임성빈;정진형;홍기석
    • Journal of Periodontal and Implant Science
    • /
    • 제35권2호
    • /
    • pp.383-399
    • /
    • 2005
  • The successful implantation necessitate tissue regeneration m site of future implant placement, there being severe bone defect. Therapeutic approaches to tissue regeneration in the site have used bone grafts, root surface treatments, barrier membranes, and growth factors, the same way being applied to periodontal tissue regeneration. Great interest in periodontal tissue regeneration has lead to research in bone graft, guided-tissue regeneration, and the administration of growth factors as possible means of regenerating lost periodontal tissue. The blood component separated by centrifuging the blood is the platelet-rich plasma. There are growth factors, PDGF, $TGF{beta}1$, $TGF{beta}2$ and IGF in the platelet-rich plasma. The purpose of this study was to study the histopathological correlation between the use of platelet-rich plasma and the healing of bone defect around implant fixture site. Implant fixtures were inserted and graft materials were placed into the left femur of in the experimental group, while the control group received only implant fixtures. In the first experimental group, platelet-rich plasma and BBP xenograft were placed at the implant fixture site, and the second experimental group had platelet-rich plasma, BBP xenograft, and the e-PTFE membrane placed at the fixture site. The degree of bone regeneration adjacent to the implant fixture was observed and compared histopathologically at 2, 4, and 8 weeks after implant fixture insertion. The results of the experiment were as follows: 1. Bone remodeling in acid etched surface near the implant fixture of all experimental groups was found to be greater than new bone formation. 2. Bone remodeling in acid etched surface distant to the implant fixture of all experimental groups was decreased and new bone formation was not changed. 3. Significant new bone formation in machined surface near the implant fixture of bothl experimental groups was observed in 2 weeks. 4. New bone formation in machined surface distant to the implant fixture of both experimental groups was observed. Bone remodeling was significant in near the implant fixture and not in distant to the implant fixture. The results of the experiment suggested that the change of bone formation around implant. Remodeling in machined surface distant to the implant fixture of both experimental groups, and new bone formation and remodeling near the implant fixture were significant.

Bioactive glass의 장기 임상적 평가 (Clinical Long-term Assessment of Bioactive Glass Graft)

  • 이항빈;백정원;김창성;최성호;조규성;김종관;채중규
    • Journal of Periodontal and Implant Science
    • /
    • 제32권1호
    • /
    • pp.187-198
    • /
    • 2002
  • The ultimate goal of periodontal therapy is the regeneration of periodontal tissue which has been lost due to destructive periodontal disease. To achieve periodontal regeneration, various kinds of methods have been investigated and developed, including guided tissue regeneration and bone graft. Bone graft can be catagorized into autografts, allografts, xenografts, bone substitutes. And materials of all types have different biological activity and the capacity for periodontal regeneration, but ideal graft material has not been developed that fits all the requirement of ideal bone graft material. Recently, bioactive glass that has been utilized in plastic surgery is being investigated for application in dental practice. But, there has not been any long-term assessment of bioactive glass when used in periodontal intrabony defects. The present study evaluates the long-term effects of bioactive glass on the periodontal regeneration in intrabony defects of human and the effect of plaqu control on long term treatment results after dividing patients into those who underwent 3-month regular check-up and those who didn't under go regular check-up The clinical effect on 74sites from 17 infrabony pockets of 11 patients were analyzed 36months after treatment. 51 sites which underwent regular check up were classified as the Follow-up group(F/U group), and 23 sites which did not undergo regular check up were classified as Non Follow-up group(Non F/U group). After comparing the probing depth, attachment loss, bone probing depth before and 36months after treatment, the following results could be concluded. 1. The changes of probing pocket depth showed a statistically significant decrease between after baseline and 36 months after treatment in F/U group(1.79${\pm}$0.68mm) and did no show astatistically significant decrease between after baseline and 36months after treatment in Non F/U group(0.61${\pm}$0.54mm) (P<0.05). 2. The changes of loss of attachment showed a statistically significant decrease between after baseline and 36 months after treatment in F/U group(1.44${\pm}$0.74mm) and did no show astatistically significant decrease between after baseline and 36months after treatment in Non F/U group(1.18${\pm}$1.54) (P<0.05). 3. The changes of bone probing depth showed a statistically significant decrease between after baseline and 36 months after treatment in both F/U(1.35${\pm}$0.28) and Non F/U group(0.78${\pm}$0.55mm) (P<0.05). The results suggest that treatment of infrabony defects with bioactive glass resulted in significan reduction of attachment loss and bone probing depth 36months after the treatment. The use of bioactive glass in infrabony defects, combined with regular check-up and proper plaque control generally shows favorable clinical results. This measn that bioactive glass could be a useful bone substitute.

Combined periodontal regenerative and prosthetic treatment of pathologic migration of anterior teeth

  • Lee, Ju-Youn
    • Journal of Periodontal and Implant Science
    • /
    • 제38권sup2호
    • /
    • pp.405-412
    • /
    • 2008
  • Purpose: Pathologic tooth migration (PTM) commonly occurs in the anterior region and is associated with periodontal disease. The treatment of PTM of anterior teeth can be complex and time consuming, and a multidisciplinary approach is often required. Materials and Methods: The patient was a 38-year-old woman with a chief complaint of saving and realigning her elongated maxillary left central incisor. This paper describes the successful combined periodontal regenerative (guided tissue regeneration) and prosthetic treatment and a 2-year follow-up of maxillary central incisor with pathologic tooth migration, deep intrabony defect, and poor prognosis. Results: The right maxillary central incisor was restored by laminate veneer and the left by all-ceramic crown. The patient had no pain and discomfort and was satisfied with the outcomes of her treatment for 2 years. She has maintained her recall program at the Department of Periodontology at 3 months interval. Conclusion: The key step in the successful treatment of PTM in anterior region is to obtain a high level of cooperation from the patient. Maintenance of the treatment result of PTM is dependent on the continuous preservation of periodontal health.

성견의 치조 연상 임플란트주위 결손부에서의 탈회냉동건조골과 e-PTEE막의 효과 (The Effect of Demineralized Freeze - Dried Bone Allograft in Guided Bone Regeneration on Supra - Alveolar Peri - Implant Defects in Dogs)

  • 김창성;최성호;조규성
    • Journal of Periodontal and Implant Science
    • /
    • 제31권1호
    • /
    • pp.57-74
    • /
    • 2001
  • The purpose of this study was to evaluate the adjunctive combined effect of demineralized freeze-dried bone allograft(DFDB) in guided bone regeneration on supra-alveo-lar peri-implant defect. Supra-alveolar perio-implant defects, 3mm in height, each including 4 IMZ titanium plasma-sprayed implants were surgically created in two mongrel dogs. Subsequently, the defects were treated with 1 of the following 3 modalities: Control) no membrane or graft application, Group1) DFDB application, Group2) guided bone regeneration using an expanded polytetra-fluoroethylene membrane, Group3) guided bone regeneration using membrane and DFDB. After a healing period of 12-week, the animals were sacrificed, tissue blocks were harvested and prepared for histological analysis. Histologic examination were as follows; 1. New bon formation was minimal in control and Group 1, but considerable new bone formation was observed in Group 2 and Group 3. 2. There was no osteointegration at the implant-bone interface in the high-polished area of group2 and Group 3. 3. In fluorescent microscopic examination, remodeling of new bone was most active during week 4 and week 8. There was no significant difference in remodeling rate between group 2 and group 3. 4. DFDB particles were observed, invested in a connective tissue matrix. Osteoblast activity in the area was minimal. The results suggest that guided bone regeneration shows promising results in supra-alveolar peri-implant defects during the 12 week healing period although it has a limited potential in promoting alveolar bone regeneration in the high-polished area. There seems to be no significant adjunctive effect when DFDB is combined with GBR.

  • PDF

Periodontal regenerative effect of a bovine hydroxyapatite/collagen block in one-wall intrabony defects in dogs: a histometric analysis

  • Jung, Ui-Won;Lee, Jung-Seok;Park, Weon-Yeong;Cha, Jae-Kook;Hwang, Ji-Wan;Park, Jung-Chul;Kim, Chang-Sung;Cho, Kyoo-Sung;Chai, Jung-Kiu;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • 제41권6호
    • /
    • pp.285-292
    • /
    • 2011
  • Purpose: The aim of this study was to elucidate the effect of a bovine hydroxyapatite/collagen (BHC) block in one-wall intrabony periodontal defects in dogs. Methods: A one-wall intrabony periodontal defect (4 mm wide and 5 mm deep) was prepared bilaterally at the mesial side of the mandibular fourth premolar in five beagle dogs. After thorough root planing, block-type BHC ($4{\times}5{\times}5$ mm) was placed on one side. The contralateral defect area did not receive any material as a sham-surgery control. Histological analysis of the sites was performed after an 8-week healing period. Results: Two of five samples in the experimental group healed well without dissipation of the graft materials, and histological analysis revealed excellent regeneration of the periodontal tissues. However, most of the grafted materials had been displaced in the other three samples, leaving only a small portion of the graft. The measured parameters exhibited large standard deviations, and the mean values did not differ significantly between the experimental and sham-surgery control sides. Conclusions: The application of BHC alone-without a barrier membrane-to wide, one-wall intrabony periodontal defects yielded inconsistent results regarding both periodontal regeneration and substantivity of the graft materials. Thus, the use of a barrier membrane for noncontained-type defects is recommended to improve the stability of the grafted material, and to condense it.

이식된 결합조직 교원막이 초기 접합상피의 근단전이 억제에 미치는 영향에 관한 연구 (THE EFFECTS OF COLLAGEN MEMBRANE AND ATUOGENOUS CONNECTIVE TISSUE GRAFT ON THE INHIBITION OF EPITHELIAL MIGRATION.)

  • 이규섭;이재현;정진형
    • Journal of Periodontal and Implant Science
    • /
    • 제23권1호
    • /
    • pp.67-76
    • /
    • 1993
  • After periodontal surgery, the potential healing responses were occurred by interaction among junctional epithelium, gingival connective tissue, alveolar bone and periodontal ligament. The only cell that created periodontal regeneration was derived from periodontal ligament. The aim of the study was to evaluate the regenerative effects of the collagen membrane($collacote^{\circ}C$) and autogenous connective tissure graft with periosteum. Experimental periodontitis were created in furcation area of 4 adult dogs with bone removal and gutta percha packing. After 6 weeks later, the gutta percha was removed and experiment was performed divided by 3 groups. 1) Flap operation(control group). 2) Flap operation with collage membrane(Experimental group I). 3) Flap operation with autogenous connective tissue graft with periosteum (Experimental group II). After dogs were sacrificed after two and three weeks, specimens were prepared and stained with hematoxylin-eosin and masson-trichrome stain for light microscopic study. The results were as follows : 1. In all gruoups, connective tissue compartments were increased from two to three weeks especially in experimental group I. 2. Collagen membrane and connective tissue were increased collagen deposits of periodontal ligament. Therefore collagen fiber attached to tooth surface was seen. 3. In al experimental groups, newly forming alveolar bone was seen. 4. Collagen membrane and connective tissue were which prevented proliferation of epithelium, aided connective tissue new attachment and influenced periodontal regeneration.

  • PDF

성견 1면 골결손부에서 Bioactive Glass가 치주조직 치유에 미치는 영향 (The effects of bioactive glass on the periodontal healing of 1-wall intrabony defects in dogs)

  • 박원영;조규성;채중규;김종관;최성호
    • Journal of Periodontal and Implant Science
    • /
    • 제28권1호
    • /
    • pp.145-160
    • /
    • 1998
  • The ultimate goal of periodontal therapy is the regeneration of periodontal tissue which has been lost due to destructive periodontal disease, and numerous kinds of materials and techniques have been developed to achieve this goal. Bone grafts include autografts, allografts, xenografts and synthetic grafts. Among the synthetic grafts, bioactive glass has been used in dentistry for more than ten years and Fetner reported improved new bone formation and more amount of new attachment after grafting PerioGlas, a kind of bioactive glass, in 2-wall defects of monkeys in 1994. It Is well known that 1-wall defects have less osteogenic potential and more epithelial migration, so we need to study the erect of bioactive glass in 1-wall dejects in dogs. The present study evaluates the effect of bioactive glass on the epithelial migration, alveolar bone regeneration, cementum formation and gingival connective tissue attachment in intrabony detects of dogs. Four millimeter deep and four millimeter wide 1-wall defects were surgically cheated in the mesial aspects of premolars. The test group received bioactive glass with a flap procedure and the control underwent flap procedure only. Histologic analysis after 8 weeks of healing revealed the following results: 1. The height of gingival margin was 1.30{\pm}0.73mm$ above CEJ in the control and $1.40{\pm}0.78mm$ in the test group. There was no statistically significant difference between the two group. 2. The length of epithelial growth (the distance from CEJ to the apical end of JE) was $1.74{\pm}0.47mm$ in the control and $1.12{\pm}0.36mm$ in the test group. These was a statistically significant difference between the two groups (P<0.01). 3. The length of new cementum was $2.06{\pm}0.73mm$ in the control and $2.62{\pm}0.37mm$ in the test group. There was no statistically significant difference between the two groups. 4. The length of new bone was $1.83{\pm}0.74mm$ in the control and $2.39{\pm}0.59mm$ in the test group. There was no statistically significant difference between the two groups. These results suggest that the use of bioactive glass 1-wall intrabony defects has significant effect on the prevention of junctional epithelium migration, but doesn't have any significant effect on new bone and new cementum formation.

  • PDF

Bone Regeneration Using Block-type Deproteinized Porcine Bone Mineral with Collagen Membrane Using 3,4-Dihydroxyphenylalanine as Bone Adhesive

  • Kang, Joo Hyun;Pae, Hyoung-Chul;Cha, Jae-Kook;Lee, Jung-Seok;Paik, Jeong-Won;Jung, Ui-Won;Choi, Seong-Ho
    • Journal of Korean Dental Science
    • /
    • 제11권2호
    • /
    • pp.43-56
    • /
    • 2018
  • Purpose: The purpose of this study was to assess the adhesiveness and cytotoxicity of 3, 4-dihydroxyphenylalanine (DOPA), and to evaluate the role of collagen membrane with DOPA in the guided bone regeneration. Materials and Methods: Peel resistance and cell cytotoxicity test were performed. Four defect types in nine rabbit calvaria were randomly allocated: i) control, ii) membrane, iii) deproteinized porcine bone mineral (DPBM) covered by membrane with DOPA, and iv) DPBM covered by membrane with cyanoacrylate. Animals were sacrificed at 2 (n=4) and 8 weeks (n=5) for microcomputed tomography and histomorphometric analysis. DOPA showed low peel resistance but high cell viability. Result: Cyanoacrylate and DOPA groups showed significantly higher mineralized tissue volume (MTV) compared to control and membrane groups at 2 weeks (P<0.05). At 8 weeks, DOPA group showed the highest MTV. Significantly higher new bone area was found in DOPA group at 8 weeks (P<0.05). Bone formation increased from 2 to 8 weeks in DOPA group (P<0.05). Conclusion: DOPA showed high cell viability and in vivo study revealed predictable performance in bone regeneration.