• Title/Summary/Keyword: regeneration medium

Search Result 844, Processing Time 0.023 seconds

Effects of Vegetable Peptones on Promotion of Cell Proliferation and Collagen Production (Vegetable Peptones의 세포증식 및 콜라겐생성 촉진효과)

  • Jung, Eun-Sun;Lee, Jong-Sung;Lee, Jienny;Huh, Sung-Ran;Kim, Young-Soo;Hwang, Wang-Taek;Park, Deok-Hoon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.35 no.1
    • /
    • pp.65-72
    • /
    • 2009
  • Skin aging appears to be principally attributed to a decrease in both levels of Type I collagen and regeneration ability of dermal fibroblasts. It is important to introduce an efficient and safe agent for effective management of skin aging. To this end, we performed screening for anti-ageing agents and then found that vegetable peptones (pea and wheat) promoted cell proliferation of adult stem cells. Vegetable peptones may be considered as useful medium additives because it can supply nutrients, peptides, amino acids or growth factor analogues. This study was designed to investigate effects of vegetable peptones on cell proliferation/collagen production and their possible mechanisms in human dermal fibroblasts. In cell proliferation assay, vegetable peptones significantly promoted cell proliferation in a concentration-dependent manner. In addition, human COL1A2 promoter luciferase and type I procollagen synthesis assays showed that vegetable peptones induce type I procollagen production through the activation of COLlA2 promoter. In both TGF-${\beta}1$ luciferase reporter and ELISA assays, vegetable peptones was found to induce TGF-${\beta}1$ production, suggesting that vegetable peptones induce type I procollagen production through the activation of TGF-${\beta}1$. When applied topically in a human skin twice a day for an 4-week period of time, vegetable peptones did not induce any adverse reactions. Theretore, based on these results, we suggest the possibility that vegetable peptones may be considered as an attractive, wrinkle-reducing candidate for topical application.

Effects of $TGF-{\beta}1$ on Cellular Activity of Minocycline-Pretreated Human Periodontal Ligament Cells (($TGF-{\beta}$)이 Minocycline을 전처리한 사람 치주인대세포의 활성에 미치는 영향)

  • Yang, Seung-Oh;You, Hyung-Keun;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.2
    • /
    • pp.469-490
    • /
    • 1996
  • The initial events required for periodontal regeneration is the attachment, spreading, and proliferation of appropriated cells at the healing sites. These have been reported that minocycline stimulates the attachment of periodontal ligament cells, and also $TGF-{\beta}1$ enhances the proliferation of periodontal ligament cells. The purpose of the present study was to evaluate the effects of $TGF-{\beta}1$ on the cellular activity of minocycline treated human periodontal ligament cells. Periodontal ligament cells were obtained from the explants of healthy periodontal ligaments of extracted 3rd molars or premolar teeth extracted from the patients for orthodontic treatment. The cells were cultured in minimal essential medium(${\alpha}-MEM$) supplemented with 10.000units/ml penicillin, $10,000{\mu}g/ml$ streptomycin and 10% FBS(fetal bovine serum) at $37^{\circ}C$ in a humidified atmosphere of 5% carbon dioxide and the 5th to the 8th passages of the cells were used. To evaluate the effect of minocycline on cell attachment, the cells were seeded at a cell density of $1.5{\times}10^4$ cells/well in 24-well culture plates and treated with $20{\mu}g/ml$ and $100{\mu}g/ml$ of minocycline for 1.5 h. After trypsinization, the cells were counted with hemocytometer and were taken photographs for observation of cellular morphology. To evaluate the effect of $TGF-{\beta}1$ on minocycline-pretreated periodontal ligament cells, the cells were seeded at a cell density of $1{\times}10^4$ cells/ well in 24-well culture plates and treated with $20{\mu}g/ml$ and $100{\mu}g/ml$ of minocycline for 1.5 h. After incubation, 1 and 10ng/ml of $rh-TGF-{\beta}1$ were also added to the each well and incubated for 1 and 2 days, respectively. Then, MTT assay, DNA synthesis($^3H-thymidine\;assay$), and protein and collagen assay(3H-proline assay) were carried out. In the MIT assay, after 200ul MTT solutionlconeentration of 5mg/ml) were added to the each well of the 24-well plates and incubated for 3 hours, and 200 ul DMSO were added so as to dissolve insoluble blue formazan crystals which was formed in incubated period. Then it read plates on a ELISA reader. For mitogenic assay, 1 uCi/ml $^3H-thymidine$ was added to each well for the final 2 hours of the incubation periods. After labeling, the wells were washed 3 times with ice cold PBS and 4 times with 5% TCA to remove unincorporated label and precipitate the cellular DNA. DNA, with the incorporated $^3H-thymidine$, was solubilized with 500 ul of 0.1% NaOH/0.1% SDS. A 250 ul aliquot was removed from each well and placed in a scintillation vial with 4ml of scintillation cocktail. Using an liguid scintillation counter, counts per minute(CPM) were determined for each samples. 3 uCi/ml $^3H-proline$ was added to each well for the final 4 hours of the incubation periods and total protein and percent collagen synthesis were carried out. The results indicate that minocycline treated group with $100{\mu}g/ml$ concentration for 1.5 hours significantly increased than that of control in cell attachment, and cell process is also evident compared with that of control in cell morphology, and the cellular activity and DNA synthesis rate of cells treated minocycline and $TGF-{\beta}1$ significantly increased than that of control values, but were below to values of the $TGF-{\beta}1$ only treated group in MIT assay and $^3H-thymidine\;assay$, and the total protein synthesis of minocycline and $TGF-{\beta}1$ treated group also significantly increased than that of control values, but the percent collagen synthesis of tested group significantly decreased to compared with control. On the above the findings, the tested group of minocycline and $TGF-{\beta}1$ did not increase the effect on the cell activity than $TGF-{\beta}1$ only tested group and the tested group of minocycline inhibited cell activity. This results indicate that minocycline was effective on cell attachment in early stage, but it is harmful to cell activity, that inhibitory effect of minocycline was compensated with stimulatory effect of $TGF-{\beta}1$.

  • PDF

The Analysis of Vegetation-Environment Relationship of the Taxus cuspidata Forests by TWINSPAN and DCCA (TWINSPAN 및 DCCA에 의한 한반도(韓半島) 주목림(林)의 군락(群落)과 환경(環境)의 상관관계(相關關係) 분석(分析))

  • Shin, Hyun Chul;Lee, Kang Young;Song, Ho Kyung
    • Journal of Korean Society of Forest Science
    • /
    • v.87 no.4
    • /
    • pp.535-542
    • /
    • 1998
  • This study was carried out for the purpose of supplying the basic data for artificial forestation, natural regeneration and ecological conservation etc., and obtaining information on alpine vegetation, by establishing vegetation units on the basis of phytosociological classification of community and studying growth pattern on the basis of species composition, hierarchy structure and population dynamics, for Taxes cuspidata naturally growing at the alpine districts in Korea. The importance value of Taxus cuspidata by districts mostly showed above 100 in the upper story but at Mt. Chiri and Mt. Hanra communities its value was comparatively low. In the middle story it showed lower value than that of upper story and not quite showed at Mt. Chiri. Taxus cuspidata communities in the lower story were only in Mt. Hanra, Mt. Odae and Mt. Sobaek, and their importance values were about 10 which were relatively low values. The communities were classified into five groups as Taxus cuspidata-Males baccata var. mandshurica, Taxus cuspidata-Abies nephrolepis, Taxus cuspidata-Abies koreana, Taxus cuspidata-Acer mono and Taxus cuspidata-Euonymus quelpaertensis by TWINSPAN analysis. Taxus cuspidata-Abies koreana community was distributed at the northern aspect of the mountain ridges and at higher elevation than other communities and distributed. Taxus cuspidata-Acer mono community was relatively low than the others and distributed at the hillsides of mountain. And Taxus cuspidata-Euonymus quelpaertensis communities were distributed at the relatively high elevation and northern and eastern aspect of the mountain tap, and Taxus cuspidata-Malus baccata var. mandshurica communities were distributed at the medium elevation, and southern and eastern aspect of the mountain ridge. In the relation between communities and environmental factors, it was correlated with aspect, elevation and topography at the first axis, and elevation, slope at the second axis.

  • PDF

THE EFFECT OF TRANSFORMING GROWTH $FACTOR-B_1$ ON THE PROLIFERATION RATE OF HUMAN PERIODONTAL LIGAMENT CELLS AND HUMAN GINGIVAL FIBROBLASTS. (변형성장인자-${\beta}_1$이 치주인대세포와 치은섬유아세포의 증식에 미치는 영향)

  • Cho, Eun-Kyeung;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.25 no.3
    • /
    • pp.720-732
    • /
    • 1995
  • The use of transforming growth $factor-{\beta}1$ which functions as a potent biologic mediator regulating numerous activities of wound healing has been suggested for the promotion of periodontal regeneration. The mitogenic effects of transforming growth $factor-{\beta}1$ on human periodontal ligament cells and human gingival fibroblasts were evaluated by determining the incorporation of $[^3H]-thymidine$ into DNA of the cells dose-dependently. Cells were prepared with primary cultured fibroblasts and periodontal ligament cells from humans, and used in experiments were the fourth or sixth subpassage. Cells were seeded with serum free Dulbecco's modified Eagle medium containing 0.1% bovine serum albumine. The added concentrations of transforming growth $factor-{\beta}1$ were 0.25, 0.5, 1, 2.5, 5ng/ml and transforming growth $factor-{\beta}1$ were added to the quiescent cells for 24hours, 48hours, 72hours. They were labeled with lnCi/ml $[^3H]$ thymidine for the last 24hour of the each culture. The results were presented as the mean counts per minute (CPM) per well and S.D. of four determinations. The results were as follows. : The DNA synthetic activity of human gingival fibroblasts was increased dose-dependently by transforming growth $factor-{\beta}1$ at 24 hours, 48 hours and 72 hours. The maximum mitogenic effects were at the 48 hour application of transforming growth $factor-{\beta}1$. The DNA synthetic activity was generally more decreased at the 72 hour application than at the 48 hour the application of transforming growth $factor-{\beta}1$. The DNA synthetic activity of human periodontal ligament cells was increased dose-dependently by transforming growth $factor-{\beta}1$ at 24 hours and 48 hours. But the DNA synthetic activity was decreased at 5ng/ml of the 72 hour application. The maximum mitogenic effects were also at the 48 hour application of transforming growth $factor-{\beta}1$. The DNA synthetic activity of human periodontal ligament cells was generally more decreased at the 72 hour application than at the 48 hour application of transforming growth $factor-{\beta}1$. In the comparision of DNA synthetic activity between the human gingival fibroblasts and human periodontal ligament cells, the human gingival fibroblasts had more activity than the human periodontal ligament cells at all time application with the concentration of transforming growth $factor-{\beta}1$. In conclusion, transforming growth $factor-{\beta}1$ has an important roles in the stimulation of DNA synthesis in human periodontal ligament cells and human gingival fibroblasts, which means an increase in collagen synthesizing cells and thus, may be useful for clinical application in periodontal regenerative procedures.

  • PDF