• Title/Summary/Keyword: refrigeration

Search Result 4,001, Processing Time 0.023 seconds

Mass flow rate ratio analysis for optimal refrigerant charge of a R744 and R404A cascade refrigeration system (R744-R404A 캐스케이드 냉동시스템의 최적 냉매 충전을 위한 질량유량비 분석)

  • Oh, Hoo-Kyu;Son, Chang-Hyo;Jo, Hwan;Jeon, Min-Ju
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.575-581
    • /
    • 2013
  • In this paper, the influences of several factors, such as subcooling, superheating degree, internal heat exchanger efficiency, and etc. to the optimal amount of refrigerant charge are investigated for the case of R744-R404A cascade refrigeration system. Refrigerants used in the cascade refrigeration system are R404A in high temperature cycle and R744 in the low temperature cycle. The main results are summarized as follows : The mass flow rate ratio decreases with increasing subcooling, superheating degree and internal heat exchanger efficiency in the high temperature cycle, and evaporating temperature and compression efficiency in the low temperature cycle. And the mass flow rate ratio decreases with decreasing temperature difference of cascade heat exchanger and evaporating, condensing temperature in the high temperature cycle, and subcooling, superheating degree and internal heat exchanger efficiency in the low temperature cycle.

State Equation Modeling and the Optimum Control of a Variable-Speed Refrigeration System (가변속 냉동시스템의 상태방정식 모델링과 최적제어)

  • Lee, Dan-Bi;Jeong, Seok-Kwon;Jung, Young-Mi
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.579-587
    • /
    • 2014
  • This paper deals with precise analytical state equation modeling of a variable speed refrigeration system (VSRS) for optimum control in state space. The VSRS is described as multi-input and multi-output (MIMO) system, which has two controlled variables and two control inputs. First, the Navier-Stokes equation and mass flow rate were applied to each component of the basic refrigeration cycle to build a dynamic model. The dynamic model, represented by a differential equation, was transformed into the state equation formula. Next, a full-order state observer was built to estimate all of the state variables to compose an optimum control system. Then, an optimum controller was designed to minimize an evaluation function that has input energy and control error. Finally, simulations and experiments were conducted to verify the validity of the proposed modeling and designed optimum controller to regulate target temperature and superheat in a 1RT oil cooler system. The results show that the proposed method, state equation modeling and optimum control, is efficient to ensure optimal control performance of the VSRS.

Overview of Project on COP Increase of Refrigeration Cycle using nano-fluids (나노유체를 이용한 냉동사이클 효율 향상 과제의 소개)

  • Kim, Jeongbae;Lee, Kyu Sun;Lee, Geun An
    • Journal of Institute of Convergence Technology
    • /
    • v.1 no.2
    • /
    • pp.29-32
    • /
    • 2011
  • In this paper, we will introduce the overview of new project dealing how to increase of refrigeration cycle COP using nano-fluids, CuO, TiO2, Al2O3, that are used on similar previous studies. Recently many studies were performed to show the effect of nano-fluids at refrigeration cycle. But, the reason was not cleared yet. In general, the flow phenomena at the evaporator were guessed to be mixed with the partial pool boiling condition and the flow boiling condition from the previous results not published yet. So, we hope that the COP increase of refrigeration cycle will be verified and showed through this project.

  • PDF

Analysis of combined cycle for desalination process and $CO_2$ refrigeration system (담수화 공정과 이산화탄소 냉동 시스템의 복합사이클 해석)

  • 신지영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.41-48
    • /
    • 2000
  • The characteristics of a combined cycle for the production of fresh water and air-conditioning was analyzed. The combined cycle consisted of an open water cycle and a $CO_2$ refrigeration cycle interlinked in the pre-heater of the water cycle, which is the condenser of the refrigeration cycle. The oprating conditions and criteria for the fresh water production and air-conditioning was described and their effects on the total system were evaluated. The results indicated an increase of desalinated water with the increase of hot water temperature, which resulted in the decrease of cooling capacity of the refrigeration system in this study. However, the energy saving correspond to the pre-heating of the water cycle by the condensing of the refrigeration system shows the avilable advantage of the proposed cycle as compared to other single purpose plants for desalination.

  • PDF

Fuzzy Control with Feedforward Compensator of Superheat in a Variable Speed Refrigeration System

  • Hua, Li;Lee, Dong-Woo;Jeong, Seok-Kwon;Yoon, Jung-In
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.252-262
    • /
    • 2007
  • In this paper, we suggest fuzzy control with feedforward compensator of superheat to progress both energy saving and coefficient of performance(COP) in a variable speed refrigeration system. The capacity and superheat are controlled simultaneously and independently by an inverter and an electronic expansion valve respectively for saving energy and improving COP in the system. By adopting the fuzzy control. the controller design for the capacity and superheat is possible without depending on a dynamic model of the system. Moreover, the feedforward compensator of the superheat can eliminate influence of the interfering loop between capacity and superheat. Some experiments are conducted to design the appropriate fuzzy controller by an iteration manner. The results show that the proposed fuzzy controller with the compensator can establish good control performances for the complicated refrigeration system with inherent strong non-linearity.