• Title/Summary/Keyword: refrigerant

Search Result 1,221, Processing Time 0.024 seconds

Pressure Drop Characteristics of Supercritical $CO_2$ in a Helically Coiled Tube (헬리컬 코일관 내 초임계 $CO_2$의 압력강하 특성)

  • Yu, Tae-Geun;Kim, Dae-Hui;Roh, Geon-Sang;Ku, Hak-Geun;Oh, Hoo-Kyu
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.216-221
    • /
    • 2005
  • The heat transfer coefficient and pressure drop during gas cooling process of carbon dioxide in a helically coiled tube were investigated experimentally. The experiments were conducted without oil in the refrigerant loop. The main components of the refrigerant loop are a receiver, a variable speed pump, a mass flowmeter, a pre-heater, a gas cooler(test section) and an isothermal tank. The test section is a double pipe type heat exchanger with refrigerant flowing in the inner tube and water flowing in the annulus. It was made of a copper tube with the inner diameter of 4.85 [mm], the outer diameter of 6.35 [mm] and length of 10000 [mm]. The refrigerant mass fluxes were 200${\sim}$600 [kg/$m^2$s] and the average pressure varied from 7.5 [MPa] to 10.0 [MPa]. The main results were summarized as follows: The heat transfer coefficient of supercritical $CO_2$ increases, as the cooling pressure of gas cooler decreases. And the heat transfer coefficient increases with the increase of the refrigerant mass flux. The pressure drop decreases in increase of the gas cooler pressure and increases with increase the refrigerant mass flux.

  • PDF

Condensing Performance Evaluation in Smooth and Micro-Fin Tubes for Natural Mixture Refrigerant (Propane/Butane) (프로판/부탄 혼합자연냉매의 평활관과 마이크로핀관 내의 응축성능평가)

  • Lee Sang-Mu;Lee Joo-Dong;Park Byung-Duck
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.9
    • /
    • pp.816-823
    • /
    • 2005
  • This paper deals with the heat exchange performance prediction of a counter flow type double-tube condenser for natural refrigerant mixtures composed of Propane/n-Butane or Propane/i-Butane in a smooth tube and a micro-fin tube. The local characteristics of heat transfer, mass transfer and pressure drop are calculated using a prediction method developed by the authors. The total pressure drop and the overall heat transfer coefficient are also evaluated on various heat exchange conditions. The calculated results of the natural refrigerant mixtures are compared with HCFC22. In conclusion, natural refrigerant mixtures composed of Propane/n-Butane or Propane/i-Butane are appropriate candidates for alternative refrigerant from the viewpoint of heat transfer characteristics.

The Performance Analysis of Sea Water Heat Pump applied Low GWP Refrigerants (Low GWP 냉매를 적용한 해수열 히트펌프의 성능해석)

  • Lim, Seung-Taek;Kim, Hyeon-Ju;Lee, Ho-Saeng
    • Journal of Power System Engineering
    • /
    • v.20 no.5
    • /
    • pp.92-97
    • /
    • 2016
  • In this study, the seawater Heat Pump System using seawater with temperature of annual domestic conditions ($0^{\circ}C$ to $25^{\circ}C$) is designed in order to compare its performance against the Heat Pump using unused heat of seawater. As a potential replacement for current refrigerants that exacerbate global warming and ozone delpetion, a Low GWP refrigerant's performance is analyzed. The basic water to water Heat Pump system is chosen and three commercial refrigerants - R134a, R410a, R32 - are used to compare against new Low GWP refrigerant R1234ze. When seawater with temperature of $25^{\circ}C$ is used, the performance change showed maximal increase in COP, 38.3%. low GWP refrigerant R1234ze, showed great performance characteristics reach to 5.242 and Existing commercial refrigerant, R134a showed only less than 0.03 performance difference against R1234ze. The study confirms notable performance of R1234ze refrigerant through simulation as environmentally friendly refrigerant for domestic seawater Heat Pump.

Frictional Pressure Drop of a Capillary Tube Flow of Pure HFC Refrigerants and Their Mixtures (HFC 순수냉매 및 혼합냉매의 모세관내에서 마찰에 의한 압력강하)

  • Chang, S.D.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.4
    • /
    • pp.589-599
    • /
    • 1995
  • The frictional pressure drop of a capillary tube flow is experimentally investigated for pure refrigerants such as R32, R125, and R134a and refrigerant mixtures such as R32/R134a(30/70 by mass percent), R32/R125(60/40), R125/R134a(30/70), and R32/R125/R134a(23/25/52). The binary interaction parameters for the calculation of viscosities of refrigerant mixtures are found based upon the data in the open literature. Several homogeneous flow models predicting the viscosity of two-phase region are compared to select the best model. Cicchitti's equation is known to be the most adequate for the prediction of the viscosity for refrigerant mixtures, which is used in the analysis of adiabatic capillary flows. A model for the prediction of the frictional pressure drop of single and two-phase flow is developed for refrigerant mixtures in this study. This model may be used to design and analyze the performance of a capillary tube in the refrigerating system.

  • PDF

Experimental Study on the Performance of Heat Pump Using Refrigerant Mixture R22/R142b (R22/R142b 혼합냉매를 사용한 열펌프의 성능)

  • Kim, M.S.;Chang, S.D.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.1
    • /
    • pp.33-47
    • /
    • 1992
  • Experimental investigation on the performance of a heat pump system using refrigerant mixtures is done. The condenser and the evaporator are double pipe heat exchangers of counter flow type and the compressor is driven by a variable speed motor. The refrigerant mixture used in the experiment is R22/R142b. Experiments are performed by changing the compressor speed, composition on ratio of mixture, and the average temperatures of condenser and evaporator. The compressor work, heating capacity and the coefficient of performance are calculated. Results show that the heating capacity can be changed by varying the mass flow rate of refrigerant mixtures to meet the heating load. It is shown that the capacity control by changing the composition ratio is more effective than by changing the compressor speed. Under the condition where the external conditions are fixed and the heating loads are equal, the coefficient of performance has its maximum value near 50 : 50 mass fraction of the refrigerant mixture in this study.

  • PDF

Capacity Modulation of a Heat Pump System by Changing the Composition of Refrigerant Mixtures (혼합냉매의 성분비 조절을 통한 열펌프의 용량조절)

  • 김민성;김민수;김용찬
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.3
    • /
    • pp.258-266
    • /
    • 2000
  • Experimental investigation and cycle simulation of a capacity modulation of a heat pump system using a hydrofluorocarbon (HFC) refrigerant mixture, R32/134a as an alternative to R22, have been done. In the cycle simulation, the refrigeration system was operated by assigning the temperatures of the external heat transfer fluids with the heat exchangers generalized by an average effective temperature difference. Heating capacity, cooling capacity, and coefficient of performance (COP) of the system were investigated at several operating conditions. Experimental apparatus which had a refrigeration part and a composition changing part was built, and the performance of the heat pump system filled with R32/134a mixture was investigated. A gas-liquid separator was used in the experiment to change the composition by collecting the vapor and the liquid Phase separately, The mass fraction of the charged refrigerant in the heat pump system was 40/60 and 70/30 by weight percentage. The composition of the refrigerant with initial composition of 40/60 varied from 29/71 to 41/59 in the refrigeration cycle. For the refrigerant with initial composition of 70/30, the composition varied from 65/35 to 75/25.

  • PDF

Performance Analysis of the Flooded Refrigerant Evaporators for Large Tonnage Compression-Type Refrigerators Using Alternative Refrigerants (대체냉매를 적용한 대형 압축식 냉동기의 만액식 증발기에 대한 성능 해석)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.18-25
    • /
    • 2016
  • Enhanced tubes are used widely in the evaporators of large tonnage compression-type refrigerators. The evaporators consist of tube bundles, and the refrigerant properties are dependent on the locations in the tube bundles. In particular, the saturation temperatures of low pressure refrigerants (R-11, R-123) are strongly dependent on the locations due to the saturation temperature-pressure curve characteristics. Therefore, for the proper design of evaporators, local property predictions of the refrigerants are necessary. In this study, a computer program that simulates the flooded refrigerant evaporators was developed. The program incorporated theoretical models to predict the refrigerant shell-side boiling heat transfer coefficients and pressure drops across the tube bundle. The program adopted an incremental iterative procedure to perform row-by-row calculations over the specified incremental tube lengths for each water-side pass. The program was used to simulate the flooded refrigerant evaporator of the "T" company operating with R-123, which yielded satisfactory results. The program was extended to predict the performance of the flooded refrigerant evaporator operating with R-11, R-123, and R-134a. The effects of bundle aspect ratio are investigated.

Effects of Water Amount in Refrigerant on Cooling Performance of Vehicle Air Conditioner (냉매 내 수분의 혼입량이 차량 에어컨의 냉각성능에 미치는 영향)

  • Moon, Seong-Won;Min, Young-Bong;Chung, Tae-Sang
    • Journal of Biosystems Engineering
    • /
    • v.36 no.5
    • /
    • pp.319-325
    • /
    • 2011
  • This study was conducted to figure out the diagnosis basis of cooling performance depending on water amount in the refrigerant of air conditioner, which can be estimated by the temperatures and pressures along the refrigerant circulation line. A car air conditioner of SONATA III (Hyundai motor Co., Korea) was tested at maximum cooling condition at the engine speed of 1500 rpm in the room controlled at 33~$35^{\circ}C$ air temperature and 55~57% relative humidity conditionally. Measured variables were temperature differences between inlet and outlet pipe surfaces of the compressor, condenser, receive drier and evaporator; and high pressure and low pressure in the refrigerant circulation line; and temperature difference between inlet and outlet air of the cooling vent of evaporator. In this study, changes of the water amount in the refrigerant were correlated to the temperatures and pressure changes and also water amount caused poor cooling performance. As water amount increased in the refrigerant in the air conditioner, the performance of the cooling or the heat transfer became worse. Temporal variations of the surface temperature of the evaporator outlet pipe and the low-side pressure showed various patterns that could estimate the water amount. When the water amount caused bad cooling performance, the patterns of the temperature of the evaporator outlet pipe indicated irregular fluctuation greater than $5^{\circ}C$. When the diagnosis system is using just external sensors of the low-side pressure and the temperatures of inlet and outlet air of cooling vent of the evaporator, the precise pattern of bad cooling performance caused by excess water amount in the cooling line was irregular pressure fluctuation, 25 kPa under 120 kPa, and temperature, $12^{\circ}C$ and less.

Performance Evaluation of a Thermo Siphon Type Radiator for LED Lighting System by using an Inverse Heat Transfer Method (역열전달해석기법에 의한 LED 조명용 무동력 냉각사이클링 방열기 성능평가)

  • Kim, E.H.;Kim, H.K.;Seo, K.S.;Lee, M.K.;Cho, C.D.
    • Transactions of Materials Processing
    • /
    • v.20 no.7
    • /
    • pp.473-478
    • /
    • 2011
  • In this study, the performance of a thermo siphon type radiator made of copper for LED lighting system was evaluated by using an inverse heat transfer method. Heating experiments and finite element heat transfer analysis were conducted for three different cases. The data obtained from experiments were compared with the analysis results. Based on the data obtained from experiments, the inverse heat transfer method was used in order to evaluate the heat transfer coefficient. First, the heat transfer analysis was conducted for non-vacuum state, without the refrigerant. The evaluated heat transfer coefficient on the radiator surface was 40W/$m^2^{\circ}C$. Second, the heat transfer analysis was conducted for non-vacuum state, with the refrigerant, resulting in the heat transfer coefficient of 95W/$m^2^{\circ}C$. Third, the heat transfer analysis was conducted for vacuum state, with refrigerant. For the third case, the evaluated heat transfer coefficients were 140W/$m^2^{\circ}C$. Third, the heat transfer analysis was conducted for vacuum state, with refrigerant. For the third case, the evaluated heat transfer coefficients were 140W/$m^2^{\circ}C$ for the radiator body, 5W/$m^2^{\circ}C$. Third, the heat transfer analysis was conducted for vacuum state, with refrigerant for the rising position of radiator pipe, 35W/$m^2^{\circ}C$. Third, the heat transfer analysis was conducted for vacuum state, with refrigerant. For the highest position of radiator pipe, and 120W/$m^2^{\circ}C$ for the downturn position of radiator pipe. As a result of inverse heat transfer analysis, it was confirmed that the thermal performance of the current radiator was best in the case of the vacuum state using the refrigerant.

A Study of Failure Examples for Refrigerant Gas Leakage in Automotive Air Conditioner System (자동차 에어컨 냉매 가스 누설에 대한 고장사례 고찰)

  • Lee, Il Kwon;Kook, Chang Ho;Moon, Hak Hoon;You, Chang Bae
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.2
    • /
    • pp.10-15
    • /
    • 2016
  • This paper is to analyze and study the failure examples of refrigerant gas in automotive air conditioner. The first example, the air conditioner compressor continually operated that the refrigerant was leaked in air conditioner system. By lubrication shortage, the piston was partially sticked on cylinder of air conditioner compressor inner part. This was caused the phenomenon of engine operation trouble by load increasing with engine rpm variation during engine running. The second example, it sought the fact that the air conditioner refrigerant gas was leaked from air conditioner compressor to condenser high pressure pipe toward rear air conditioner checking with the lines of air conditioner. The third example, the refrigerant gas of air conditioner found that was leaked imperceptible from condenser inner by crack that was generated on the fins of air conditioner condenser. Therefore, the air conditioner system that maintain the air conditioner by decreasing the in-car temperature must meticulously manage to not leak the air conditioner refrigerant gas.