• Title/Summary/Keyword: refolding chaperone

Search Result 13, Processing Time 0.035 seconds

Effect of temperature and denaturation conditions on protein folding assisted by GroEL-GroES chaperonin (GroEL-GroES 샤페로닌에 의한 단백질 접힘에 있어서 온도와 변성조건의 영향)

  • Bae, Yu-Jin;Jang, Kyoung-Jin;Jeon, Sung-Jong;Nam, Soo-Wan;Lee, Jae-Hyung;Kim, Young-Man;Kim, Dong-Eun
    • Journal of Life Science
    • /
    • v.17 no.2 s.82
    • /
    • pp.211-217
    • /
    • 2007
  • The goal of this study is to investigate effects of temperature and co-chaperonin requirement for in vitro protein refolding assisted by E. coli chaperone GroEL under permissive and nonpermissive temperature conditions. In vitro protein refolding of two denatured proteins was kinetically investigated under several conditions in the presence of GroEL. Effects of temperature and GroES-requirement on the process of prevention of protein aggregation and refolding of denatured protein were extensively monitored. We have found that E. coli GroEL chaperone system along with ATP is required for invitro refolding of unfolded polypeptide under nonpermissive temperature of $37^{\circ}C$. However, under permissive condition spontaneous refolding can occur due to lower temperature, which can competes with chaperone-mediated protein refolding via GroEL chaperone system. Thus, GroEL seemed to divert spontaneous refolding pathway of unfolded polypeptide toward chaperone-assisted refolding pathway, which is more efficient protein refolding pathway.

Characterization of Protein Disulfide Isomerase during Lactoferrin Polypeptide Structural Maturation in the Endoplasmic Reticulum

  • Lee, Dong-Hee;Kang, Seung-Ha;Choi, Yun-Jaie
    • BMB Reports
    • /
    • v.34 no.2
    • /
    • pp.102-108
    • /
    • 2001
  • A time-dependent folding process was used to determine whether or not protein disulfide isomerase (PDI) plays an important role in the maturation of nascent lactoferrin polypeptides. Interaction between lactoferrin and PDI was analyzed according to the co-immunoprecipitation of the two proteins. The results indicate that lactoferrin folding requires a significant interaction with PDI and its binding is relatively brief compared to other nascent polypeptides. The amount of lactoferrin interacting with PDI increases up to half a minute and sharply decreases beyond this time point. During the refolding process that follows reduction by DTT, lactoferrin polypeptides heavily interact with PDI and the interaction period was extended compared to the normal folding process. In terms of the temperature effect on PDI-lactoferrin interaction, PDI binds to lactoferrin polypeptides longer at a lower temperature (here, $25^{\circ}C$) than $37^{\circ}C$. The lactoferrin-PDI interaction was also studied in vitro. According to the in vitro experiment data, PDI was still functional in cell lysates assisting lactoferrin folding into the mature form. PDI interacts with lactoferrin polypeptides for an extended period during the folding in vitro. During the refolding process in vitro, intermolecular aggregates and refolding oligomers matured into a functional form after PDI binds to the lactoferrin. These results suggest that PDI provides a prolonged chaperoning activity in the refolding processes and that there appears to be a greater requirement for PDI chaperone activity in the refolding of lactoferrin polypeptides.

  • PDF

Improved Technologies to Produce Heterologous Proteins in Recombinant Escherichia coli. (재조합 대장균에서 외래단백질 발현을 위한 기술개발)

  • 박용철;권대혁;이대희;서진호
    • KSBB Journal
    • /
    • v.16 no.1
    • /
    • pp.1-10
    • /
    • 2001
  • Escherichia coli has been used as an expression work horse for foreign genes. This article summarized recent development in genetic engineering techniques for overproduction of medical proteins and industrial enzymes. Special emphasis was placed upon research activities concerning folding and refolding of inclusion bodies at genetic and fermentation levels. Plasmid and mRNA stabilization, development of strong inducible promoters, modification of translational elements and reduction of rpoteolytic degradation were carried out to elevate an expression level of a target protein. Optimization of culture conditions, improvement of denaturation and renaturation steps and coexpression of molecular chaperones or foldase were accomplished to produce active proteins in soluble form. Fusion protein systems with selective separation and surface display technology were also performed in an effort to make the E. coli expression system more effective and versatile.

  • PDF

Structural resemblance of the DNAJA-family protein, Tid1, to the DNAJB-family Hsp40

  • Jang, Jinhwa;Lee, Sung-Hee;Kang, Dong-Hoon;Sim, Dae-Won;Ryu, Kyung-Suk;Jo, Ku-Sung;Lee, Jinhyuk;Ryu, Hyojung;Kim, Eun-Hee;Won, Hyung-Sik;Kim, Ji-Hun
    • BMB Reports
    • /
    • v.55 no.10
    • /
    • pp.488-493
    • /
    • 2022
  • The specific pair of heat shock protein 70 (Hsp70) and Hsp40 constitutes an essential molecular chaperone system involved in numerous cellular processes, including the proper folding/refolding and transport of proteins. Hsp40 family members are characterized by the presence of a conserved J-domain (JD) that functions as a co-chaperone of Hsp70. Tumorous imaginal disc 1 (Tid1) is a tumor suppressor protein belonging to the DNAJA3 subfamily of Hsp40 and functions as a co-chaperone of the mitochondrial Hsp70, mortalin. In this work, we performed nuclear magnetic resonance spectroscopy to determine the solution structure of JD and its interaction with the glycine/phenylalanine-rich region (GF-motif) of human Tid1. Notably, Tid1-JD, whose conformation was consistent with that of the DNAJB1 JD, appeared to stably interact with its subsequent GF-motif region. Collectively with our sequence analysis, the present results demonstrate that the functional and regulatory mode of Tid1 resembles that of the DNAJB1 subfamily members rather than DNAJA1 or DNAJA2 subfamily proteins. Therefore, it is suggested that an allosteric interaction between mortalin and Tid1 is involved in the mitochondrial Hsp70/Hsp40 chaperone system.

Molecular Chaperonic Function of C-Reactive Protein Induced by Heating in HT-29 Human Colon Carcinoma Cells

  • Lee, Soo-Young;Jung, Hyun-Jung;Kim, Hyun-Soo;Lee, Seung-Chul;Lee, Si-Back;Joe, Jae-Hoon;Kim, You-Mie
    • BMB Reports
    • /
    • v.33 no.5
    • /
    • pp.407-411
    • /
    • 2000
  • The effects of heat shock, or all-trans retinoic acid, on the expression of the C-reactive protein mRNA in the HT-29 human colon carcinoma cells, as well as the functional role of the C-reactive protein as a molecular chaperone, were studied. The expression level of the C-reactive protein mRNA in the HT-29 cells was increased time-dependently when exposed to heat-shock, and dose-dependently when treated with all-trans retinoic acid. The activities of transglutaminase C and K in the HT-29 cells were significantly increased when treated with all-trans retinoic acid. The C-reactive protein prevented thermal aggregation of the citrate synthase and stabilized the target enzyme, citrate synthase. The C-reactive protein promoted functional refolding of the urea-denatured citrate synthase up to 40-70%. These results suggest that the C-reactive protein, which is induced in human colon carcinoma cells, when heated or treated with all-trans retinoic acid has in a part functional activity of the molecular chaperone.

  • PDF

Bioinformatics Analysis of Hsp20 Sequences in Proteobacteria

  • Heine, Michelle;Chandra, Sathees B.C.
    • Genomics & Informatics
    • /
    • v.7 no.1
    • /
    • pp.26-31
    • /
    • 2009
  • Heat shock proteins are a class of molecular chaperones that can be found in nearly all organisms from Bacteria, Archaea and Eukarya domains. Heat shock proteins experience increased transcription during periods of heat induced osmotic stress and are involved in protein disaggregation and refolding as part of a cell's danger signaling cascade. Heat shock protein, Hsp20 is a small molecular chaperone that is approximately 20kDa in weight and is hypothesized to prevent aggregation and denaturation. Hsp20 can be found in several strains of Proteobacteria, which comprises the largest phyla of the Bacteria domain and also contains several medically significant bacterial strains. Genomic analyses were performed to determine a common evolutionary pattern among Hsp20 sequences in Proteobacteria. It was found that Hsp20 shared a common ancestor within and among the five subclasses of Proteobacteria. This is readily apparent from the amount of sequence similarities within and between Hsp20 protein sequences as well as phylogenetic analysis of sequences from proteobacterial and non-proteobacterial species.

Molecular Cloning and Chaperone Activity of DnaK from Cold-adapted Bacteria, KOPRI22215

  • Sung, Min-Sun;Im, Ha-Na;Lee, Kyung-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1925-1930
    • /
    • 2011
  • Psychrophilic bacteria have acquired cold-resistance in order to protect themselves against freezing temperatures, which would otherwise be lethal. DnaK/DnaJ/GrpE systems are molecular chaperones which facilitate proper folding of newly synthesized proteins. Efficient folding processes are of great importance especially in a cold environment, such as the Arctic. In order to understand the protection mechanisms of psychrophilic bacteria against cold temperatures, we have explored a genome of KOPRI22215, tentatively identified as Psychromonas arctica, whose genome sequence has not yet been discovered. With an aim of searching for a coding gene of DnaK from KOPRI22215, we have applied a series of polymerase chain reactions (PCR) with homologous primers designed from other Psychromonas species and LA PCR in vitro cloning. 1917 bp complete coding sequence of dnaK from KOPRI22215 was identified including upstream promoter sites. Recombinant plasmids to overexpress PaDnaK along with EcDnaK (DnaK of E. coli) were then constructed in pAED4 vector and the pET-based system to induce PaDnaK expression by IPTG. Characterization assays of expressed PaDnaK were carried out by measuring survival rates upon 4 day incubation at 4 $^{\circ}C$: a refolding assay as molecular chaperone, and ATPase assay for functional activity. Taking account of all the data together, we conclude that PaDnaK was identified, successfully expressed, and found to be more efficient in providing cold-resistance for bacterial cells.

Inhibition of Citrate Synthase Thermal Aggregation In Vitro by Recombinant Small Heat Shock Proteins

  • Gong, Weina;Yue, Ming;Xie, Bingyan;Wan, Fanghao;Guo, Jianying
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1628-1634
    • /
    • 2009
  • Small heat shock proteins (sHSPs) function as molecular chaperones that protect cells against environmental stresses. In the present study, the genes of hsp17.6 and hsp17.7, cytosolic class I sHSPs, were cloned from a tropical plant, Ageratina adenophorum. Their C-terminal domains were highly conserved with those of sHSPs from other plants, indicating the importance of the C-terminal domains for the structure and activity of sHSPs. The recombinant HSP17.6 and HSP17.7 were applied to determine their chaperone function. In vitro, HSP17.6 and HSP17.7 actively participated in the refolding of the model substrate citrate synthase (CS) and effectively prevented the thermal aggregation of CS at $45^{\circ}C$ and the irreversible inactivation of CS at $38^{\circ}C$ at stoichiometric levels. The prior presence of HSP17.7 was assumed to suppress the thermal aggregation of the model substrate CS. Therefore, this report confirms the chaperone activity of HSP17.6 and HSP17.7 and their potential as a protectant for active proteins.

Gene Cloning, Purification, and Characterization of a Cold-Adapted Lipase Produced by Acinetobacter baumannii BD5

  • Park, In-Hye;Kim, Sun-Hee;Lee, Yong-Seok;Lee, Sang-Cheol;Zhou, Yi;Kim, Cheol-Min;Ahn, Soon-Cheol;Choi, Yong-Lark
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.2
    • /
    • pp.128-135
    • /
    • 2009
  • Acinetohacter baumannii BD5 was isolated from waters of Baek-du mountain, and the lipase gene was cloned using a PCR technique. The deduced amino acid sequence of the lipase and lipase chaperone were found to encode proteins of 325 aa and 344 aa with a molecular mass of 35 kDa and 37 kDa, respectively. The lipase gene was cloned and expressed in Escherichia coli BL21(trxB) as an inclusion body, which was subsequently solubilized by urea, and then purified using Ni-affinity chromatography. After being purified, the lipase was refolded by incubation at $4^{\circ}C$ in the presence of a 1:10 molar ratio of lipase:chaperone. The maximal activity of the refolded lipase was observed at a temperature of $35^{\circ}C$ and pH 8.3 when p-NP caprate(C10) was used as a substrate; however, 28% of the activity observed at $35^{\circ}C$ was still remaining at $0^{\circ}C$. The stability of the purified enzyme at low temperatures indicates that it is a cold-adapted enzyme. The refolded lipase was activated by $Ca^{2+},\;Mg^{2+},\;and\;Mn^{2+}$, whereas $Zn^{2+}\;and\;Cu^{2+}$ inhibited it. Additionally, 0.1% Tween 20 increased the lipase activity by 33%, but SDS and Triton X-100 inhibited the lipase activity by 40% and 70%, respectively.

Stabilization of HRP Using Hsp90 in Water-miscible Organic Solvent (Hsp90을 이용한 유기용매에서의 과산화효소 안정화 연구)

  • Chung, Ja Hee;Choi, Yoo Seong;Song, Seung Hoon;Yoo, Young Je
    • Korean Chemical Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.92-96
    • /
    • 2006
  • Enzymes in organic media afford many advantages such as chiral synthesis and resolution, modification of fats and oils and production of biodegradable polymers. However, the nature of solvents influences the activity and stability of enzymes, and the presence of organic solvents always constitute a risk of enzyme inactivation. Heat-shock protein Hsp90, one of the molecular chaperone, was applied for understanding of enzyme inactivation and for increasing of enzyme stability in water-miscible organic solvent. Hsp90 showed stabilization effect on HRP in the 30% of DMSO, in the 30% and 50% of dioxane. Hsp90 also showed reactivation effect on the inactivated HRP by water-miscible organic solvent such as dioxane and DMSO. In addition, structural analysis using fluorescence spectrophotometry and circular dichroism showed that exposure of HRP in water-miscible organic solvent caused appreciable conformational changes and enzyme inactivation, and the unfolded HRP by water-miscible organic solvent was refolded by Hsp90.