• Title/Summary/Keyword: reflection index(RI)

Search Result 5, Processing Time 0.022 seconds

A Study on Relations of Peripheral Arterial Disease Marker and Photoplethysmography Measured from the Lower Limb (하지에서의 광용적맥파와 말초동맥질환 표지자의 상관관계 연구)

  • Im, Ji Hyeon;Heo, Jung Hyun;Yoon, Young Ro
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.3
    • /
    • pp.95-101
    • /
    • 2017
  • In this study, photoplethysmography(PPG) was suggested as a way to replace the ankle-brachial index(ABI) in diagnosing PAD. The method using the PPG was presented for the simplification of the PAD diagnosis method which was used before. And the index related to the health condition of the artery from the PPG measured in both big toes of the subjects through the experiment was drawn. The indexes showing the significant relativeness in the Pearson correlation analysis with the ABI were the stiffness index(SI), reflection index(RI); it was confirmed each of them had the correlation coefficient of 0.688, and 0.637 at p < 0.05. The explanation ability of the linear regression equation derived using ABI, SI and RI was 52.5%. The explanation ability of the secondary curve regression equation derived using ABI, squared SI was 54.7%. It is expected to provide patients with significant results and draw the index associated with PAD by measuring PPG easily in the real life instead of the ambulatory care field.

Impact of Anti-Reflective Coating on Silicon Solar Cell and Glass Substrate : A Brief Review

  • Zahid, Muhammad Aleem;Khokhar, Muhammad Quddamah;Cho, Eun-Chel;Cho, Young Hyun;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.8 no.1
    • /
    • pp.1-5
    • /
    • 2020
  • The most important factor in enhancing the performance of an optical device is to minimize reflection and increasing transmittance of light for a broad wavelength range. The choice of appropriate coating material is crucial in decreasing reflection losses at the substrate. The purpose of this review is to highlight anti-reflection coating (ARC) materials that can be applied to silicon solar cell and glass substrate for minimizing reflection losses. The optical and electrical behavior of ARC on a substrate is highly dependent on thickness and refractive index (RI) of ARC films that are being deposited on it. The coating techniques and performance of single and multi-layered ARC films after coated on a substrate in a wide range of wavelength spectrum will be studied in the paper.

Refractive index-based soil moisture sensor (굴절률 기반 토양 수분 센서)

  • Sim, Eun-Seon;Hwa, Su-Bin;Jang, Ik-Hoon;Na, Jun-Hee;Kim, Min-Hoi
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.415-419
    • /
    • 2021
  • We developed a highly accurate, yet inexpensive, refractive index (RI)-based soil moisture sensor. To detect the RI, a light guide was set with a light-emitting diode and photodiode. When the air fills the space between the soil particles, most of the incident light is reflected at the interface between the waveguide and the air because of the large RI difference. As the moisture of the soil increases, the macroscopic soil RI increases. This allows incident light to pass through the interface. The intensity of the light reaching the photodiode was simulated according to the change in the soil RI. Using the simulation results, we designed and manufactured a curved glass waveguide. We evaluated the performance of the RI-based soil sensor by comparing it with a commercially available, high-cost and high-performance time-domain reflectometer (TDR). Our sensor was 96% accurate, surpassing the costly TDR sensor.

A Vascular Characteristic Index of Blood Pressure Variation using the Pulse Wave Signal

  • Kim, Gi-Ryon;Jung, Dong-Keun;Ye, Soo-Young;Jeon, Gye-Rok
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.5
    • /
    • pp.213-219
    • /
    • 2008
  • Pulse waves continuously change with respect to the characteristics and status of the cardiovascular system and in relation to the blood pressure (BP) and the pulse wave velocity (PWV). Monitoring the vascular condition by analyzing the variations in pulse waveforms has been used to diagnose vascular disorders and in drug treatment of arteriosclerosis and peripheral circulatory obstruction. In this paper, we investigated the vascular characteristic index with regard to the BP and classified by pulse wave signals. The pressure pulse wave and photoplethysmography (PPG) were measured simultaneously while subjects exercised, producing changes in the BP, to analyze the variation in the vascular characteristic index. We investigated the correlation between the BP and vascular characteristic index with regard to the classification methods of the pulse wave. The reflection index (RI) and vascular stiffness index were correlated with the diastolic BP, but no correlation was found between these parameters and the systolic BP. These results suggest the possibility of estimating BP through simple measurements of pulse waves.

Optical and Electrical Properties of ZnO Hybrid Structure Grown on Glass Substrate by Metal Organic Chemical Vapor Deposition (유기금속화학증착법으로 유리기판 위에 성장된 산화아연 하이브리드 구조의 광학적 전기적 특성)

  • Kim, Dae-Sik;Kang, Byung Hoon;Lee, Chang-Min;Byun, Dongjin
    • Korean Journal of Materials Research
    • /
    • v.24 no.10
    • /
    • pp.543-549
    • /
    • 2014
  • A zinc oxide (ZnO) hybrid structure was successfully fabricated on a glass substrate by metal organic chemical vapor deposition (MOCVD). In-situ growth of a multi-dimensional ZnO hybrid structure was achieved by adjusting the growth temperature to determine the morphologies of either film or nanorods without any catalysts such as Au, Cu, Co, or Sn. The ZnO hybrid structure was composed of one-dimensional (1D) nanorods grown continuously on the two-dimensional (2D) ZnO film. The ZnO film of 2D mode was grown at a relatively low temperature, whereas the ZnO nanorods of 1D mode were grown at a higher temperature. The change of the morphologies of these materials led to improvements of the electrical and optical properties. The ZnO hybrid structure was characterized using various analytical tools. Scanning electron microscopy (SEM) was used to determine the surface morphology of the nanorods, which had grown well on the thin film. The structural characteristics of the polycrystalline ZnO hybrid grown on amorphous glass substrate were investigated by X-ray diffraction (XRD). Hall-effect measurement and a four-point probe were used to characterize the electrical properties. The hybrid structure was shown to be very effective at improving the electrical and the optical properties, decreasing the sheet resistance and the reflectance, and increasing the transmittance via refractive index (RI) engineering. The ZnO hybrid structure grown by MOCVD is very promising for opto-electronic devices as Photoconductive UV Detectors, anti-reflection coatings (ARC), and transparent conductive oxides (TCO).