• Title/Summary/Keyword: reflection coefficient of wave

Search Result 242, Processing Time 0.022 seconds

Submerged Floating Wave Barrier

  • Kee S.T.;Park W.S.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.85-89
    • /
    • 2004
  • The wave interactions with fully submerged and floating dual buoy/vertical porous membrane breakwaters has been investigated in experimentally to validate the developed theory and numerical method in the previous study, in which multi-domain hydro-elastic formulation was carried out in the context of linear wave-body interaction theory and Darcy's law. It is found that the experimental results agrees well with the numerical prediction. Transmission and reflection can be quite reduced simultaneously especially in the region of long waves. The properly tuned system to incoming waves can effectively dissipate wave energy and also offset each other between incident and scattered waves using its hydro-elasticity and geometry.

  • PDF

Analysis of Hydraulic Characteristics According to the Cross-Section Changes in Submerged Rigid Vegetation

  • Lee, Jeongheum;Jeong, Yeon-Myeong;Kim, Jun-Seok;Hur, Dong-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.326-339
    • /
    • 2022
  • Recently, not only Korea but also the world has been suffering from problems related to coastal erosion. The hard defense method has been primarily used as a countermeasure against erosion. However, this method is expensive and has environmental implications. Hence, interest in other alternative methods, such as the eco-friendly vegetation method, is increasing. In this study, we aim to analyze the hydraulic characteristic of submerged rigid vegetation according to the cross-sectional change through a hydraulic experiment and numerical simulation. From the hydraulic experiment, the reflection coefficient, transmission coefficient, and energy dissipation coefficient were analyzed according to the density, width, and multi-row arrangement of the vegetation zone. From numerical simulations, the flow field, vorticity distribution, turbulence distribution, and wave distribution around the vegetation zone were analyzed according to the crest depth, width, density, and multi-row arrangement distance of the vegetation zone. The hydraulic experiment results suggest that the transmission coefficient decreased as the density and width of the vegetation zone increased, and the multi-row arrangement condition did not affect the hydraulic characteristics significantly. Moreover, the numerical simulations showed that as the crest depth decreased, the width and density of vegetation increased along with vorticity and turbulence intensity, resulting in increased wave height attenuation performance. Additionally, there was no significant difference in vorticity, turbulence intensity, and wave height attenuation performance based on the multi-row arrangement distance. Overall, in the case of submerged rigid vegetation, the wave energy attenuation performance increased as the density and width of the vegetation zone increased and crest depth decreased. However, the multi-row arrangement condition did not affect the wave energy attenuation performance significantly.

Interactions of a Horizontal Flexible Membrane with Incident Waves (입사파와 수평형 유연막의 상호작용)

  • Cho, Il-Hyoung;Hong, Seok-Won;Kim, Moo-Hyun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.9 no.4
    • /
    • pp.182-193
    • /
    • 1997
  • The interaction of monochromatic incident waves with a horizontal flexible membrane is investigated in the context of two-dimensional linear hydro-elastic theory. First, analytic diffraction and radiation solutions for a submerged impermeable horizontal membrane are obtained. Second, the theoretical prediction was compared with a series of experiments conducted in a two-dimensional wave tank at Texas A & M University. The measured reflection and transmission coefficients reasonably follow the trend of predicted values. Using the developed computer program, the performance of surface-mounted or submerged horizontal membrane wave barriers is tested with various system parameters and wave characteristics. It is found that the properly designed horizontal flexible membrane can be an effective wave barrier.

  • PDF

The Performance of a Horizontal Flexible Membrane Breakwater in Waves (파랑중 수평형 유연막 방파제 성능해석)

  • Cho I.H.;Hong S.W.;Kim M.H.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.1 no.2
    • /
    • pp.27-39
    • /
    • 1998
  • The interaction of monochromatic incident waves with a horizontal flexible membrane is investigated in the context of two-dimensional linear hydro-elastic theory. First, analytic diffraction and radiation solutions for a submerged impermeable horizontal membrane are obtained. Second, the theoretical prediction was compared with a series of experiments conducted in a two-dimensional wave tank at Texas A&M University. The measured reflection and transmission coefficients reasonably follow the trend of predicted values. Using the developed computer program, the performance of surface-mounted or submerged horizontal membrane wave barriers is tested with various system parameters and wave characteristics. It is found that the properly designed horizontal flexible membrane can be an effective wave barrier.

  • PDF

Analysis of Wave Reflection Characteristics for Bottom Proection Bio Block (해저침식방호용 바이오 블록의 파랑반사특성 분석)

  • Lee, J.W.;Kim, J.S.;Kim, H.J.;Lee, Y.H.;Lee, D.H.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.06a
    • /
    • pp.270-272
    • /
    • 2013
  • In order to protect coastal facilities mainly from wave and current actions, the self-locking bio blocks constituting component elements of protecting structures against scouring were designed. These blocks are adapted to the sloping bottom, coastal dunes, and submerged coastal base counteracting the destructive and erosive impulse action. A series of laboratory experiments is necessary to investigate the reflection of water waves over and against a train of protruded or submerged shore structures and compare the reflecting capabilities of incident waves including wave forces. In this study the hydraulic model experiment was conducted to identify the performance of newly designed water affinity bio blocks to keep the coast slope and bottom mound from scouring by reduction of the reflection coefficient and to convince stability of the placements. Revised design of each element of blocks were also tested for field conditions. From the result of experiment, the field applicability of the developed blocks and placement is to be discussed afterward.

  • PDF

Investigation of the U-shape submerged breakwater performance by the finite-different scheme

  • Barzegar, Mohammad
    • Ocean Systems Engineering
    • /
    • v.11 no.1
    • /
    • pp.83-97
    • /
    • 2021
  • The submerged U-shape breakwater interaction with the solitary wave is simulated by the Boussinesq equations using the finite-difference scheme. The wave reflection, transmission, and dissipation (RTD) coefficients are used to investigate the U-shape breakwater's performance for different crest width, Lc1, and indent breakwater height, du. The results show that the submerged breakwater performance for a set of U-shape breakwater with the same cross-section area is related to the length of submerged breakwater crest, Lc1, and the distance between the crests, Lc2 (or the height of du). The breakwater has the maximum performance when the crest length is larger, and at the same time, the distance between them increases. Changing the Lc1 and du of the U-shape breakwaters result in a significant change in the RTD coefficients. Comparison of the U-shape breakwater, having the best performance, with the averaged RTD values shows that the transmission coefficients, Kt, has a better performance of up to 4% in comparison to other breakwaters. Also, the reflection coefficients KR and the diffusion coefficients, Kd shows a better performance of about 30% and 55% on average, respectively. However, the model governing equations are non-dissipative. The non-energy conserving of the transmission and reflection coefficients due to wave and breakwater interaction results in dissipation type contribution. The U-shape breakwater with the best performance is compared with the rectangular breakwater with the same cross-section area to investigate the economic advantages of the U-shape breakwater. The transmission coefficients, Kt, of the U-shape breakwater shows a better performance of 5% higher than the rectangular one. The reflection coefficient, KR, is 60% lower for U-shape in comparison to rectangular one; however, the diffusion coefficients, Kd, of U-shape breakwater is 35% higher than the rectangular breakwater. Therefore, we could say that the U-shape breakwater has a better performance than the rectangular one.

DC ∼ 45 GHz CPW Wideband Distributed Amplifier Using MHEMT (MHEMT를 이용한 DC ∼ 45 GHz CPW 광대역 분산 증폭기 설계 및 제작)

  • Jin Jin-Man;Lee Bok-Hyung;Lim Byeong-Ok;An Dan;Lee Mun-Kyo;Lee Sang-Jin;Ko Du-Hyun;Beak Yong Hyun;Oh Jung-Hun;Chae Yeon-Sik;Park Hyung-Moo;Kim Sam-Dong;Rhee Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.12
    • /
    • pp.7-12
    • /
    • 2004
  • In this paper, CPW wideband distributed amplifier was designed and fabricated using 0.1 $\mum$ InGaAs/InAlAs/GaAs Metamorphic HEMT(High Electron Mobility Transistor). The DC characteristics of MHEMT are 442 mA/mm of drain current density, 409 mS/mm of maximum transconductance. The current gain cut-off frequency(fT) is 140 GHz and the maximum oscillation frequency(fmax) is 447 GHz. The distributed amplifier was designed using 0.1 $\mum$ MHEMT and CPW technology. We designed the structure of CPW curve, tee and cross to analyze the discontinuity characteristics of the CPW line. The MIMIC circuit patterns were optimized electromagnetic field through momentum. The designed distributed amplifier was fabricated using our MIMIC standard process. The measured results show S21 gain of above 6 dB from DC to 45 GHz. Input reflection coefficient S11 of -10 dB, and output reflection coefficient S22 of -7 dB at 45 GHz, respectively. The chip size of the fabricated CPW distributed amplifier is 2.0 mm$\times$l.2 mm.

Wave Absorbing Characteristics of a Horizontal Submerged Punching Plate (수평형 타공판의 소파특성)

  • 조일형
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.4
    • /
    • pp.265-273
    • /
    • 2002
  • In this paper, wave absorbing characteristics of a horizontal submerged punching plate are investigated throughout the calculation and the experiment. The punching plate with the array of circular holes can force the flow to separate and to form eddies of high vorticity and cause significant energy loss. As an analytic tool, the linear water wave theory and the eigenfunction expansion method is applied. Darcy's law that the normal velocity of the fluid passing through the punching plate is linearly proportional to the pressure difference between two sides of the punching plate is assumed. The proportional constant called the porous coefficient is deeply dependent to the porosity. To obtain the relationship between the porosity and the porous coefficient the systematic model test for the punching plates with 6 different porosities is conducted at 2-dimensional wave tank. It is found that the porous coefficient is linearly proportional to the porosity(b=57.63P-0.9717). It is also noted that the optimal porosity value is near P=0.1 and the optimal range of submergence depth is $d/h\\leq0.2$ within entire frequency range.

Characterization of Pipe Defects in Torsional Guided Waves Using Chirplet Transform (첩릿변환을 이용한 배관 결함 특성 규명)

  • Kim, Chung-Youb;Park, Kyung-Jo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.8
    • /
    • pp.636-642
    • /
    • 2014
  • The sensor configuration of the magnetostrictive guided wave system can be described as a single continuous transducing element which makes it difficult to separate the individual modes from the reflected signal. In this work we develop the mode decomposition technique employing chirplet transform, which is able to separate the individual modes from dispersive and multimodal waveform measured with the magnetostrictive sensor, and to estimate the time-frequency centers and individual energies of the reflection, which would be used to locate and characterize defects. The reflection coefficients are calculated using the modal energies of the separated mode. Results from experimental results on a carbon steel pipe are presented, which show that the accurate and quantitative defect characterization could become enabled using the proposed technique.

Estimation of the continuity of inclined pits by tunnel channel wave investigation (터널 채널파를 이용한 사갱 연장성 규명)

  • 김중열;방기문;정현기
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.229-236
    • /
    • 2002
  • In this paper, a new novel technique of seismic survey is introduced to estimate the continuity of inclined pits filled with water, It was assumed that the pits would be connected to an abandoned railway tunnel that might be constructed in the past. Thus, detection of pit end was needed for the design of a new highway tunnel(Yukshimreong tunnel) that was likely to be met with a pit. In the beginning of exploration, no reliable, cost effective method was available. Hence, focus of interest moved toward the high impedance contrast(reflection coefficient k∼0.8) between water and rock. In this special model of sequence rock-water-rock, total reflection occurs and the seismic energy, when it is generated in the pit water, is nearly confined to the pit so that seismic waves can propagate much further within the pit. As a matter of convenience, this is called“tunnel channel wave”. With these considerations in mind, seismic detonator(2g) was used as a source at the entrance of pit, whereas hydrophone chain(hydrophone interval=1m) was placed on the bottom of pit. With this appropriate source-receiver arrangement, desirable down-going and up-going waves could be observed that will help conform the continuity of pits. After about one year, it was ascertained that the inclined pit of interest was just nearby crossed with the newly excavated tunnel, as it was predicted.

  • PDF