• Title/Summary/Keyword: refined higher-order deformation theory

Search Result 64, Processing Time 0.02 seconds

Free vibration analysis of FG plates resting on the elastic foundation and based on the neutral surface concept using higher order shear deformation theory

  • Benferhat, Rabia;Daouadji, Tahar Hassaine;Mansour, Mohamed Said;Hadji, Lazreg
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.1033-1048
    • /
    • 2016
  • An analytical solution based on the neutral surface concept is developed to study the free vibration behavior of simply supported functionally graded plate reposed on the elastic foundation by taking into account the effect of transverse shear deformations. No transversal shear correction factors are needed because a correct representation of the transversal shearing strain obtained by using a new refined shear deformation theory. The foundation is described by the Winkler-Pasternak model. The Young's modulus of the plate is assumed to vary continuously through the thickness according to a power law formulation, and the Poisson ratio is held constant. The equation of motion for FG rectangular plates resting on elastic foundation is obtained through Hamilton's principle. Numerical examples are provided to show the effect of foundation stiffness parameters presented for thick to thin plates and for various values of the gradient index, aspect and side to thickness ratio. It was found that the proposed theory predicts the fundamental frequencies very well with the ones available in literature.

A simple analytical model for free vibration and buckling analysis of orthotropic rectangular plates

  • Sellam, Souad;Draiche, Kada;Tlidji, Youcef;Addou, Farouk Yahia;Benachour, Abdelkader
    • Structural Engineering and Mechanics
    • /
    • v.75 no.2
    • /
    • pp.157-174
    • /
    • 2020
  • In the present paper, a simple analytical model is developed based on a new refined parabolic shear deformation theory (RPSDT) for free vibration and buckling analysis of orthotropic rectangular plates with simply supported boundary conditions. The displacement field is simpler than those of other higher-order theories since it is modeled with only two unknowns and accounts for a parabolic distribution of the transverse shear stress through the plate thickness. The governing differential equations related to the present theory are obtained from the principle of virtual work, while the solution of the eigenvalue problem is achieved by assuming a Navier technique in the form of a double trigonometric series that satisfy the edge boundary conditions of the plate. Numerical results are presented and compared with previously published results for orthotropic rectangular plates in order to verify the precision of the proposed analytical model and to assess the impacts of several parameters such as the modulus ratio, the side-to-thickness ratio and the geometric ratio on natural frequencies and critical buckling loads. From these results, it can be concluded that the present computations are in excellent agreement with the other higher-order theories.

Thermal buckling analysis of embedded graphene-oxide powder-reinforced nanocomposite plates

  • Ebrahimi, Farzad;Nouraei, Mostafa;Dabbagh, Ali;Rabczuk, Timon
    • Advances in nano research
    • /
    • v.7 no.5
    • /
    • pp.293-310
    • /
    • 2019
  • In this paper, thermal-buckling behavior of the functionally graded (FG) nanocomposite plates reinforced with graphene oxide powder (GOP) is studied under three types of thermal loading once the plate is supposed to be rested on a two-parameter elastic foundation. The effective material properties of the nanocomposite plate are considered to be graded continuously through the thickness according to the Halpin-Tsai micromechanical scheme. Four types of GOPs' distribution namely uniform (U), X, V and O, are considered in a comparative way in order to find out the most efficient model of GOPs' distribution for the purpose of improving the stability limit of the structure. The governing equations of the plate have been derived based on a refined higher-order shear deformation plate theory incorporated with Hamilton's principle and solved analytically via Navier's solution for a simply supported GOP reinforced (GOPR) nanocomposite plate. Some new results are obtained by applying different thermal loadings to the plate according to the GOPs' negative coefficient of thermal expansion and considering both Winkler-type and Pasternak-type foundation models. Besides, detailed parametric studies have been carried out to reveal the influences of the different types of thermal loading, weight fraction of GOP, aspect and length-to-thickness ratios, distribution type, elastic foundation constants and so on, on the critical buckling load of nanocomposite plates. Moreover, the effects of thermal loadings with various types of temperature rise are investigated comparatively according to the graphical results. It is explicitly shown that the buckling behavior of an FG nanocomposite plate is significantly influenced by these effects.

Investigating nonlinear thermal stability response of functionally graded plates using a new and simple HSDT

  • Bensaid, Ismail;Bekhadda, Ahmed;Kerboua, Bachir;Abdelmadjid, Cheikh
    • Wind and Structures
    • /
    • v.27 no.6
    • /
    • pp.369-380
    • /
    • 2018
  • In this research work, nonlinear thermal buckling behavior of functionally graded (FG) plates is explored based a new higher-order shear deformation theory (HSDT). The present model has just four unknowns, by using a new supposition of the displacement field which enforces undetermined integral variables. A shear correction factor is, thus, not necessary. A power law distribution is employed to express the disparity of volume fraction of material distributions. Three kinds of thermal loading, namely, uniform, linear, and nonlinear and temperature rises over z-axis direction are examined. The non-linear governing equations are resolved for plates subjected to simply supported boundary conditions at the edges. The results are approved with those existing in the literature. Impacts of various parameters such as aspect and thickness ratios, gradient index, type of thermal load rising, on the non-dimensional thermal buckling load are all examined.

Vibration analysis of porous FGM plate resting on elastic foundations: Effect of the distribution shape of porosity

  • Hadj, Bekki;Rabia, Benferhat;Daouadji, Tahar Hassaine
    • Coupled systems mechanics
    • /
    • v.10 no.1
    • /
    • pp.61-77
    • /
    • 2021
  • The porosity of functionally graded materials (FGM) can affect the static and dynamic behavior of plates, which is important to take this aspect into account when analyzing such structures. The present work aims to study the effect of the distribution shape of porosity on the free vibration response of simply supported FG plate reposed on the Winkler-Pasternak foundation. A refined theory of shear deformation is expanded to study the influence of the distribution shape of porosity on the free vibration behavior of FG plates. The findings showed that the distribution shape of porosity significantly influences the free vibration behavior of thick rectangular FG plates for small values of Winkler-Pasternak elastic foundation parameters.

Assessment of nonlinear stability of geometrically imperfect nanoparticle-reinforced beam based on numerical method

  • Zheng, Yuxin;Jin, Hongwei;Jiang, Congying
    • Advances in nano research
    • /
    • v.13 no.2
    • /
    • pp.113-120
    • /
    • 2022
  • In this paper, a finite element (FE) simulation has been developed in order to examine the nonlinear stability of reinforced sandwich beams with graphene oxide powders (GOPs). In this regard, the nonlinear stability curves have been obtained asuming that the beam is under compressive loads leading to its buckling. The beam is considered to be a three-layered sandwich beam with metal core and GOP reinforced face sheets and it is rested on elastic substrate. Moreover, a higher-order refined beam theory has been considered to formulate the sandwich beam by employing the geometrically perfect and imperfect beam configurations. In the solving procedure, the utalized finite element simulation contains a novel beam element in which shear deformation has been included. The calculated stability curves of GOP-reinforced sandwich beams are shown to be dependent on different parameters such as GOP amount, face sheet thickness, geometrical imperfection and also center deflection.

Thermal buckling properties of zigzag single-walled carbon nanotubes using a refined nonlocal model

  • Semmah, Abdelwahed;Beg, O. Anwar;Mahmoud, S.R.;Heireche, Houari;Tounsi, Abdelouahed
    • Advances in materials Research
    • /
    • v.3 no.2
    • /
    • pp.77-89
    • /
    • 2014
  • In the present article, the thermal buckling of zigzag single-walled carbon nanotubes (SWCNTs) is studied using a nonlocal refined shear deformation beam theory and Von-Karman geometric nonlinearity. The model developed simulates both small scale effects and higher-order variation of transverse shear strain through the depth of the nanobeam. Furthermore the present formulation also accommodates stress-free boundary conditions on the top and bottom surfaces of the nanobeam. A shear correction factor, therefore, is not required. The equivalent Young's modulus and shear modulus for zigzag SWCNTs are derived using an energy-equivalent model. The present study illustrates that the thermal buckling properties of SWCNTs are strongly dependent on the scale effect and additionally on the chirality of zigzag carbon nanotube. Some illustrative examples are also presented to verify the present formulation and solutions. Good agreement is observed.

Analysis of wave propagation and free vibration of functionally graded porous material beam with a novel four variable refined theory

  • Ayache, Belqassim;Bennai, Riadh;Fahsi, Bouazza;Fourn, Hocine;Atmane, Hassen Ait;Tounsi, Abdelouahed
    • Earthquakes and Structures
    • /
    • v.15 no.4
    • /
    • pp.369-382
    • /
    • 2018
  • A free vibration analysis and wave propagation of functionally graded porous beams has been presented in this work using a high order hyperbolic shear deformation theory. Unlike other conventional shear deformation theories, a new displacement field that introduces indeterminate integral variables has been used to minimize the number of unknowns. The constituent materials of the beam are assumed gradually variable along the direction of height according to a simple power law distribution in terms of the volume fractions of the constituents. The variation of the pores in the direction of the thickness influences the mechanical properties. It is therefore necessary to predict the effect of porosity on vibratory behavior and wave velocity of FG beams in this study. A new function of the porosity factor has been developed. Hamilton's principle is used for the development of wave propagation equations in the functionally graded beam. The analytical dispersion relationship of the FG beam is obtained by solving an eigenvalue problem. Illustrative numerical examples are given to show the effects of volume fraction distributions, beam height, wave number, and porosity on free vibration and wave propagation in a functionally graded beam.

Analytical and finite element method for the bending analysis of the thick porous functionally graded sandwich plate including thickness stretching effect

  • Imad Benameur;Youcef Beldjelili;Abdelouahed Tounsi
    • Structural Engineering and Mechanics
    • /
    • v.85 no.5
    • /
    • pp.593-605
    • /
    • 2023
  • This work presents a comparison between analytical and finite element analysis for bending of porous sandwich functionally graded material (FGM) plates. The plate is rectangular and simply supported under static sinusoidal loading. Material properties of FGM are assumed to vary continuously across the face sheets thickness according to a power-law function in terms of the volume fractions of the constituents while the core is homogeneous. Four types of porosity are considered. A refined higher-order shear with normal deformation theory is used. The number of unknowns in this theory is five, as against six or more in other shear and normal deformation theories. This theory assumes the nonlinear variation of transverse shear stresses and satisfies its nullity in the top and bottom surfaces of the plate without the use of a shear correction factor. The governing equations of equilibrium are derived from the virtual work principle. The Navier approach is used to solve equilibrium equations. The constitutive law of the porous FGM sandwich plate is implemented for a 3D finite element through a subroutine in FORTRAN (UMAT) in Abaqus software. Results show good agreement between the finite element model and the analytical method for some results, but the analytical method keeps giving symmetric results even with the thickness stretching effect and load applied to the top surface of the sandwich.

Dynamic stress response in the nanocomposite concrete pipes with internal fluid under the ground motion load

  • Keshtegar, Behrooz;Tabatabaei, Javad;Kolahchi, Reza;Trung, Nguyen-Thoi
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.327-335
    • /
    • 2020
  • Concrete pipes are considered important structures playing integral role in spread of cities besides transportation of gas as well as oil for far distances. Further, concrete structures under seismic load, show behaviors which require to be investigated and improved. Therefore, present research concerns dynamic stress and strain alongside deflection assessment of a concrete pipe carrying water-based nanofluid subjected to seismic loads. This pipe placed in soil is modeled through spring as well as damper. Navier-Stokes equation is utilized in order to gain force created via fluid and, moreover, mixture rule is applied to regard the influences related to nanoparticles. So as to model the structure mathematically, higher order refined shear deformation theory is exercised and with respect to energy method, the motion equations are obtained eventually. The obtained motion equations will be solved with Galerkin and Newmark procedures and consequently, the concrete pipe's dynamic stress, strain as well as deflection can be evaluated. Further, various parameters containing volume percent of nanoparticles, internal fluid, soil foundation, damping and length to diameter proportion of the pipe and their influences upon dynamic stress and strain besides displacement will be analyzed. According to conclusions, increase in volume percent of nanoparticles leads to decrease in dynamic stress, strain as well as displacement of structure.