• Title/Summary/Keyword: refined higher order beam

Search Result 34, Processing Time 0.019 seconds

Nonhomogeneous atherosclerotic plaque analysis via enhanced 1D structural models

  • Varello, Alberto;Carrera, Erasmo
    • Smart Structures and Systems
    • /
    • v.13 no.4
    • /
    • pp.659-683
    • /
    • 2014
  • The static analysis of structures with arbitrary cross-section geometry and material lamination via a refined one-dimensional (1D) approach is presented in this paper. Higher-order 1D models with a variable order of expansion for the displacement field are developed on the basis of Carrera Unified Formulation (CUF). Classical Euler-Bernoulli and Timoshenko beam theories are obtained as particular cases of the first-order model. Numerical results of displacement, strain and stress are provided by using the finite element method (FEM) along the longitudinal direction for different configurations in excellent agreement with three-dimensional (3D) finite element solutions. In particular, a layered thin-walled cylinder is considered as first assessment with a laminated conventional cross-section. An atherosclerotic plaque is introduced as a typical structure with arbitrary cross-section geometry and studied for both the homogeneous and nonhomogeneous material cases through the 1D variable kinematic models. The analyses highlight limitations of classical beam theories and the importance of higher-order terms in accurately detecting in-plane cross-section deformation without introducing additional numerical problems. Comparisons with 3D finite element solutions prove that 1D CUF provides remarkable three-dimensional accuracy in the analysis of even short and nonhomogeneous structures with arbitrary geometry through a significant reduction in computational cost.

Buckling and free vibration analyses of nanobeams with surface effects via various higher-order shear deformation theories

  • Rahmani, Omid;Asemani, S. Samane
    • Structural Engineering and Mechanics
    • /
    • v.74 no.2
    • /
    • pp.175-187
    • /
    • 2020
  • The theories having been developed thus far account for higher-order variation of transverse shear strain through the depth of the beam and satisfy the stress-free boundary conditions on the top and bottom surfaces of the beam. A shear correction factor, therefore, is not required. In this paper, the effect of surface on the axial buckling and free vibration of nanobeams is studied using various refined higher-order shear deformation beam theories. Furthermore, these theories have strong similarities with Euler-Bernoulli beam theory in aspects such as equations of motion, boundary conditions, and expressions of the resultant stress. The equations of motion and boundary conditions were derived from Hamilton's principle. The resultant system of ordinary differential equations was solved analytically. The effects of the nanobeam length-to-thickness ratio, thickness, and modes on the buckling and free vibration of the nanobeams were also investigated. Finally, it was found that the buckling and free vibration behavior of a nanobeam is size-dependent and that surface effects and surface energy produce significant effects by increasing the ratio of surface area to bulk at nano-scale. The results indicated that surface effects influence the buckling and free vibration performance of nanobeams and that increasing the length-to-thickness increases the buckling and free vibration in various higher-order shear deformation beam theories. This study can assist in measuring the mechanical properties of nanobeams accurately and designing nanobeam-based devices and systems.

Finite element based modeling and thermal dynamic analysis of functionally graded graphene reinforced beams

  • Al-Maliki, Ammar F.H.;Ahmed, Ridha A.;Moustafa, Nader M.;Faleh, Nadhim M.
    • Advances in Computational Design
    • /
    • v.5 no.2
    • /
    • pp.177-193
    • /
    • 2020
  • In the present research, dynamic analysis of functionally graded (FG) graphene-reinforced beams under thermal loading has been carried out based on finite element approach. The presented formulation is based on a higher order refined beam element accounting for shear deformations. The graphene-reinforced beam is exposed to transverse periodic mechanical loading. Graphene platelets have three types of dispersion within the structure including uniform-type, linear-type and nonlinear-type. Convergences and validation studies of derived results from finite element approach are also presented. This research shows that the resonance behavior of a nanocomposite beam can be controlled by the GPL content and dispersions. Therefore, it is showed that the dynamical deflections are notably influenced by GPL weight fractions, types of GPL distributions, temperature changes, elastic foundation and harmonic load excitation frequency.

Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections

  • Ahmed, Ridha A.;Fenjan, Raad M.;Faleh, Nadhim M.
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.175-180
    • /
    • 2019
  • This research is concerned with post-buckling investigation of nano-scaled beams constructed from porous functionally graded (FG) materials taking into account geometrical imperfection shape. Hence, two types of nanobeams which are perfect and imperfect have been studied. Porous FG materials are classified based on even or uneven porosity distributions. A higher order nonlinear refined beam theory is used in the present research. Both perfect and imperfect nanobeams are formulated based on this refined theory. A detailed study is provided to understand the effects of geometric imperfection, pore distribution, material distribution and small scale effects on buckling of FG nanobeams.

Buckling analysis of graphene oxide powder-reinforced nanocomposite beams subjected to non-uniform magnetic field

  • Ebrahimi, Farzad;Nouraei, Mostafa;Dabbagh, Ali;Civalek, Omer
    • Structural Engineering and Mechanics
    • /
    • v.71 no.4
    • /
    • pp.351-361
    • /
    • 2019
  • Present article deals with the static stability analysis of compositionally graded nanocomposite beams reinforced with graphene oxide powder (GOP) is undertaken once the beam is subjected to an induced force caused by nonuniform magnetic field. The homogenized material properties of the constituent material are approximated through Halpin-Tsai micromechanical scheme. Three distribution types of GOPs are considered, namely uniform, X and O. Also, a higher-order refined beam model is incorporated with the dynamic form of the virtual work's principle to derive the partial differential motion equations of the problem. The governing equations are solved via Galerkin's method. The introduced mathematical model is numerically validated presenting a comparison between the results of present work with responses obtained from previous articles. New results for the buckling load of GOP reinforced nanocomposites are presented regarding for different values of magnetic field intensity. Besides, other investigations are performed to show the impacts of other variants, such as slenderness ratio, boundary condition, distribution type and so on, on the critical stability limit of beams made from nanocomposites.

Flutter analysis by refined 1D dynamic stiffness elements and doublet lattice method

  • Pagani, Alfonso;Petrolo, Marco;Carrera, Erasmo
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.3
    • /
    • pp.291-310
    • /
    • 2014
  • An advanced model for the linear flutter analysis is introduced in this paper. Higher-order beam structural models are developed by using the Carrera Unified Formulation, which allows for the straightforward implementation of arbitrarily rich displacement fields without the need of a-priori kinematic assumptions. The strong form of the principle of virtual displacements is used to obtain the equations of motion and the natural boundary conditions for beams in free vibration. An exact dynamic stiffness matrix is then developed by relating the amplitudes of harmonically varying loads to those of the responses. The resulting dynamic stiffness matrix is used with particular reference to the Wittrick-Williams algorithm to carry out free vibration analyses. According to the doublet lattice method, the natural mode shapes are subsequently used as generalized motions for the generation of the unsteady aerodynamic generalized forces. Finally, the g-method is used to conduct flutter analyses of both isotropic and laminated composite lifting surfaces. The obtained results perfectly match those from 1D and 2D finite elements and those from experimental analyses. It can be stated that refined beam models are compulsory to deal with the flutter analysis of wing models whereas classical and lower-order models (up to the second-order) are not able to detect those flutter conditions that are characterized by bending-torsion couplings.

Assessment of nonlinear stability of geometrically imperfect nanoparticle-reinforced beam based on numerical method

  • Zheng, Yuxin;Jin, Hongwei;Jiang, Congying
    • Advances in nano research
    • /
    • v.13 no.2
    • /
    • pp.113-120
    • /
    • 2022
  • In this paper, a finite element (FE) simulation has been developed in order to examine the nonlinear stability of reinforced sandwich beams with graphene oxide powders (GOPs). In this regard, the nonlinear stability curves have been obtained asuming that the beam is under compressive loads leading to its buckling. The beam is considered to be a three-layered sandwich beam with metal core and GOP reinforced face sheets and it is rested on elastic substrate. Moreover, a higher-order refined beam theory has been considered to formulate the sandwich beam by employing the geometrically perfect and imperfect beam configurations. In the solving procedure, the utalized finite element simulation contains a novel beam element in which shear deformation has been included. The calculated stability curves of GOP-reinforced sandwich beams are shown to be dependent on different parameters such as GOP amount, face sheet thickness, geometrical imperfection and also center deflection.

Nonlinear vibration of functionally graded nano-tubes using nonlocal strain gradient theory and a two-steps perturbation method

  • Gao, Yang;Xiao, Wan-Shen;Zhu, Haiping
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.205-219
    • /
    • 2019
  • This paper analyzes nonlinear free vibration of the circular nano-tubes made of functionally graded materials in the framework of nonlocal strain gradient theory in conjunction with a refined higher order shear deformation beam model. The effective material properties of the tube related to the change of temperature are assumed to vary along the radius of tube based on the power law. The refined beam model is introduced which not only contains transverse shear deformation but also satisfies the stress boundary conditions where shear stress cancels each other out on the inner and outer surfaces. Moreover, it can degenerate the Euler beam model, the Timoshenko beam model and the Reddy beam model. By incorporating this model with Hamilton's principle, the nonlinear vibration equations are established. The equations, including a material length scale parameter as well as a nonlocal parameter, can describe the size-dependent in linear and nonlinear vibration of FGM nanotubes. Analytical solution is obtained by using a two-steps perturbation method. Several comparisons are performed to validate the present analysis. Eventually, the effects of various physical parameters on nonlinear and linear natural frequencies of FGM nanotubes are analyzed, such as inner radius, temperature, nonlocal parameter, strain gradient parameter, scale parameter ratio, slenderness ratio, volume indexes, different beam models.

Stability analysis of porous multi-phase nanocrystalline nonlocal beams based on a general higher-order couple-stress beam model

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.465-476
    • /
    • 2018
  • This article investigates buckling behavior of a multi-phase nanocrystalline nanobeam resting on Winkler-Pasternak foundation in the framework of nonlocal couple stress elasticity and a higher order refined beam model. In this model, the essential measures to describe the real material structure of nanocrystalline nanobeams and the size effects were incorporated. This non-classical nanobeam model contains couple stress effect to capture grains micro-rotations. Moreover, the nonlocal elasticity theory is employed to study the nonlocal and long-range interactions between the particles. The present model can degenerate into the classical model if the nonlocal parameter, and couple stress effects are omitted. Hamilton's principle is employed to derive the governing equations and the related boundary conditions which are solved applying an analytical approach. The buckling loads are compared with those of nonlocal couple stress-based beams. It is showed that buckling loads of a nanocrystalline nanobeam depend on the grain size, grain rotations, porosities, interface, elastic foundation, shear deformation, surface effect, nonlocality and boundary conditions.

Vibration of piezo-magneto-thermoelastic FG nanobeam submerged in fluid with variable nonlocal parameter

  • Selvamani Rajendran;Rubine Loganathan;Murat Yaylaci;Ecren Uzun Yaylaci;Mehmet Emin Ozdemir
    • Advances in nano research
    • /
    • v.16 no.5
    • /
    • pp.489-500
    • /
    • 2024
  • This paper studies the free vibration analysis of the piezo-magneto-thermo-elastic FG nanobeam submerged in a fluid environment. The problem governed by the partial differential equations is determined by refined higher-order State Space Strain Gradient Theory (SSSGT). Hamilton's principle is applied to discretize the differential equation and transform it into a coupled Euler-Lagrange equation. Furthermore, the equations are solved analytically using Navier's solution technique to form stiffness, damping, and mass matrices. Also, the effects of nonlocal ceramic and metal parts over various parameters such as temperature, Magnetic potential and electric voltage on the free vibration are interpreted graphically. A comparison with existing published findings is performed to showcase the precision of the results.