JSTS:Journal of Semiconductor Technology and Science
/
제15권3호
/
pp.404-416
/
2015
Small-area, low-power coarse and fine frequency detectors (FDs) are proposed for an adaptive bandwidth referenceless CDR with a wide range of input data rate. The coarse FD implemented with two flip-flops eliminates harmonic locking as long as the initial frequency of the CDR is lower than the target frequency. The fine FD samples the incoming input data by using half-rate four phase clocks, while the conventional rotational FD samples the full-rate clock signal by the incoming input data. The fine FD uses only a half number of flip-flops compared to the rotational FD by sharing the sampling and retiming circuitry with PLL. The proposed CDR chip in a 65-nm CMOS process satisfies the jitter tolerance specifications of both USB 3.0 and USB 3.1. The proposed CDR works in the range of input data rate; 2 Gb/s ~ 8 Gb/s at 1.2 V, 4 Gb/s ~ 11 Gb/s at 1.5 V. It consumes 26 mW at 5 Gb/s and 1.2 V, and 41 mW at 10 Gb/s and 1.5 V. The measured phase noise was -97.76 dBc/Hz at the 1 MHz frequency offset from the center frequency of 2.5 GHz. The measured rms jitter was 5.0 ps at 5 Gb/s and 4.5 ps at 10 Gb/s.
본 연구의 목적은 시간 분해능이 향상된 비지역적 평균 (fast non local means, FNLM) 노이즈 제거 알고리즘을 모델링하여 광학 현미경 영상에서의 적용 가능성을 확인하는 것이다. 이를 위해 실제 흰쥐 (mouse)의 첫째어금니 치아를 사용하여 영상을 획득한 후 기존에 널리 사용되고 있는 노이즈 제거 알고리즘과 제안하는 FNLM 알고리즘을 각각 적용하여 비교하였다. 정량적 평가는 대조도 대 잡음비 (contrast to noise ratio, CNR), 변동계수 (coefficient of variation, COV), 그리고 최근에 개발된 no reference 기반의 방법인 natural image quality evaluator (NIQE)와 Blind/referenceless image spatial quality evaluator (BRISQUE)를 사용하였다. 결과적으로 모든 정량적 평가 인자에서 제안하는 FNLM 노이즈 제거 알고리즘이 가장 우수한 값을 나타내었다. 특히나 치아의 전체적인 형태학적 영상을 분석할 수 있는 NIQE와 BRISQUE 인자는 원본영상에 비하여 각각 1.14와 1.12배 향상됨을 확인할 수 있었다. 결론적으로 소동물 치아 광학 현미경 영상에서의 FNLM 노이즈 제거 알고리즘의 유용성 및 가능성을 증명하였다.
최근 모바일 단말기 및 개인형 컴퓨터의 비약적인 발전과 신경망 기술의 등장으로 영상을 활용한 실시간 안면 교체가 가능해졌다. 특히, 순환 적대적 생성 신경망은 상호 연관성이 없는 이미지 데이터를 활용한 안면 교체가 가능하게 만들었다. 본 논문에서는 적은 학습 데이터와 시간으로 안면 교체의 품질을 높일 수 있는 입력 데이터 처리 기법을 제안한다. 제안 방식은 사전에 학습된 신경망을 통해서 추출된 안면의 특이점 정보와 안면의 구조와 표정에 영향을 미치는 주요 이미지 정보를 결합함으로써 안면 표정과 구조를 보존하면서 이미지 품질을 향상시킬 수 있다. 인공지능 기반의 무참조 품질 메트릭 중의 하나인 blind/referenceless image spatial quality evaluator (BRISQUE) 점수를 활용하여 제안 방식의 성능을 정량적으로 분석하고 기존 방식과 비교한다. 성능 분석 결과에 따르면 제안 방식은 기존 방식 대비 약 4.6%~14.6% 개선된 BRISQUE 점수를 나타내었다.
본 논문에서는 6 Fisheye lens 원본 영상에 대하여 Insta360 stitcher, AutoStitch[4], As-Projective-AsPossible(APAP)[5] 스티칭 방법으로 360 도 파노라마 영상을 생성하고 기하학적 왜곡과 컬러 왜곡을 비교 평가한다. 360 도 파노라마 Image Quality Assessment(IQA) 메트릭으로 Natural Image Quality Evaluator(NIQE)[6], Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE)[7], Perception based Image Quality Evaluator(PIQE)[8], Feature Similarity(FSIM)[9] 그리고 high frequency feature 에 대한 Structural Similarity(SSIM)[10]을 측정하여 정량적 평가를 하며 정성적인 비교를 통하여 파노라마 영상의 품질과 평가 메트릭에 대한 벤치마크를 제공한다.
치주질환의 조기 진단률 및 예측 정확도 향상을 위한 X-선 영상 분석은 매우 중요한 분야이다. 이러한 치과 X-선 영상의 화질 개선을 위한 인공 지능 기반의 알고리즘 개발 및 적용에 관한 연구는 전 세계적으로 널리 수행 중이다. 따라서 본 연구의 목표는 치주질환 예측을 위한 치과 X-선 영상에서의 초해상화 알고리즘의 모델링 및 적용 가능성에 관하여 평가하는 것이다. 초해상화 알고리즘은 convolution layer와 ReLU를 기반으로 구성하였고, 저해상도 영상을 2배로 업샘플링 한 영상을 입력으로 사용하였다. 딥러닝 훈련을 위해 사용한 치과 X-선 데이터는 1,500장을 사용하였다. 영상의 정량적 평가는 2가지 영상의 비교를 통해 유사도를 측정할 수 있는 인자인 root mean square error와 structural similarity를 사용하였다. 이와 더불어 최근에 개발된 no-reference 기반으로 사용되는 natural image quality evaluator 와 blind/referenceless image spatial quality evaluator를 추가적으로 분석하였다. 결과적으로 기존에 사용되던 bicubic 기반의 업샘플링 기법을 사용하였을 때에 비하여 제안하는 방법이 치과 X-선 영상에서 평균적으로 유사도와 no-reference 기반의 평가 인자가 각각 1.86 그리고 2.14배 향상됨을 확인하였다. 결론적으로 치주질환의 예측을 위한 초해상화 알고리즘의 치과 X-선 영상에서의 유용성을 증명하였고 향후 다양한 분야에서의 적용 가능성이 높을 것으로 기대된다.
전산화단층촬영장치 (Computed tomography, CT)의 의료 방사선량을 낮추기 위한 방법으로 주석필터의 사용을 통해 직접적으로 환자의 선량을 낮추는 방법이 있다. 그러나 주석필터의 사용으로 바뀐 X선 스펙트럼으로 인해 기존의 영상과 다른 인상의 영상으로 나타나기 때문에 질병 진단에 영향을 줄 수 있다. 따라서 본 연구에서는 흉부 저선량 CT에서 주석필터의 적용 및 high pitch에 따른 영상평가를 진행함으로써 주석필터 사용 시 영상의 변화 양상을 살펴보았다. 본 연구에서는 비교를 위해 총 3개의 그룹으로 나누어 영상을 획득하였다. Group 1은 주석필터를 사용하지 않았으며, 기존에 사용하던 pitch인 0.8의 영상을 획득하였다. Group 2는 주석필터를 사용하였고, pitch는 0.8이며 Group 3은 주석필터를 사용하였으며 pitch는 2.5이다. 영상의 화질을 비교하기 위해 no-reference 기반으로 사용되는 블라인드 품질 평가 인자 중 natural image quality evaluator (NIQE)와 blind/referenceless image spatial quality evaluator (BRISQUE)를 사용하였다. 그 결과 NIQE 수치는 Group 1, Group 3, Group 2 의 순서대로 낮게 나타났다. BRISQUE 수치는 Group 3, Group 2, Group 1 의 순서대로 낮게 나타났다. 이를 통해 흉부 저선량 CT에서 주석필터 및 high pitch 기술의 영상의 우수성을 확인함으로써 특히 호흡 조절이 어려운 흉부 저선량 CT 환자에 있어서 더 정확한 영상에 대한 기대감을 가질 수 있는 기초 자료로 활용될 수 있을 것이라 사료된다.
전산화단층촬영장치 (Computed Tomography, CT)의 화질을 유지하면서 방사선량을 낮추기 위한 대표적인 방법 중에 하나는 모델기반 반복 재구성법 (Model-Based Iterative Reconstruction, MBIR)을 사용하는 것이다. 본 연구에서는 MBIR의 대표적인 모델로 잘 알려진 고급 모델 반복 재구성법 (Advanced Modeled Iterative Reconstruction, ADMIRE)의 강도를 조절하여 영상의 화질을 평가하고자 하였다. 연구는 팬텀을 사용하여 수행되었고, ADMIRE의 강도를 1에서부터 5까지 1 단위로 조절하면서 CT 영상을 획득하였다. 정량적 평가는 변동 계수 (coefficient of variation, COV)와 대조도 대 잡음비 (contrast to noise ratio, CNR)를 활용한 노이즈 레벨과 natural image quality evaluator (NIQE)와 blind/referenceless image spatial quality evaluator (BRISQUE)의 블라인드 품질 평가를 수행하였다. 결과적으로 노이즈 레벨 및 블라인드 품질 평가 결과에서 모두 ADMIRE의 강도가 높아질수록 우수한 결과가 도출되었다. 특히, COV와 CNR은 ADMIRE 1에 비하여 5에서 각각 1.89 및 1.75배 향상됨을 확인하였고, NIQE와 BRISQUE는 재구성 강도 1에 비하여 5에서 각각 1.35 및 1.22배 향상됨이 증명되었다. 결론적으로 ADMIRE의 재구성 강도는 CT 영상의 노이즈 레벨 및 전체적인 화질 평가에 큰 영향을 끼친다는 것을 증명하였다.
The purpose of this study is to examine the status of quality control using multipurpose phantom of ultrasound equipment used in hospital of veterinary college in South Korea by using ATS-539 multipurpose phantom so as to examine quantitative and objective new image evaluation method. Specialists discussed and analyzed multipurpose phantom images acquired by using convex transducer of 10 ultrasound imaging devices, currently used in 9 veterinary colleges, at 4.0-6.0 MHz. Total 8 items that can be measured with ATS-539 multipurpose phantom including dead zone, vertical and horizontal measurement, axial/lateral resolution, sensitivity, focal zone, functional resolution and gray scale/dynamic range were evaluated. For qualitative evaluation, valid decisions were made based on dead zone, axial/lateral resolution, and gray scale/dynamic range which are resolution index, and coefficient of variation (COV) and blind referenceless image spatial quality evaluator (BRISQUE) were found to increase objectivity. As a result of experiment, all the targeted ultrasonic devices were found appropriate from qualitative evaluation items of dead zone, axial/lateral resolution, and gray scale/dynamic range. In other evaluation items, they were found to be appropriate from focal zone and vertical measurement of quantitative evaluation while inappropriate from horizontal measurement, sensitivity, and functional resolution. COV value was 0.12 ± 0.04, and BRISQUE value was 47.77 ± 2.77, both analysis results show that the noise level of all ultrasonic devices was located within tolerance range. Upon image examination using ATS-539 multipurpose phantom, they were 100% appropriate with inspection standards of dead zone, axial/lateral resolution, and gray scale/dynamic range, and besides, focal zone and functional resolution can be used as evaluation items. In the field of veterinary medicine, 8 standard items using ATS-539 multipurpose phantom and image evaluation items using COV and BRISQUE can be used as standards for quality control of ultrasonography machine.
Many recent studies have reported that the quality of input learning data was vital to the detection of regions of interest. However, due to a lack of research on the quality of learning data on lesion detetcting using gastroscopy, we aimed to quantify the impact of quality difference in endoscopic images to lesion detection models using Image Quality Assessment (IQA) algorithms. Through IQA methods such as BRISQUE (Blind/Referenceless Image Spatial Quality Evaluation), Laplacian Score, and PSNR (Peak Signal-To-Noise) algorithm on 430 sheets of high quality data (HQD) and 430 sheets of low quality data (PQD), we showed that there were significant differences between high and low quality images in lesion detecting through BRISQUE and Laplacian scores (p<0.05). The PSNR value showed 10.62±1.76 dB on average, illustrating the lower lesion detection performance of PQD than HQD. In addition, F1-Score of HQD showed higher detection performance at 77.42±3.36% while F1-Score of PQD showed 66.82±9.07%. Through this study, we hope to contribute to future gastroscopy lesion detection assistance systems that involve IQA algorithms by emphasizing the importance of using high quality data over lower quality data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.