• Title/Summary/Keyword: reference scan

Search Result 184, Processing Time 0.026 seconds

Use of Reference Ear Plug to improve accuracy of lateral cephalograms generated from cone-beam computed tomography scans

  • Hwang, Hyeon-Shik;Lee, Kyung-Min;Uhm, Gi-Soo;Cho, Jin-Hyoung;McNamara, James A. Jr.
    • The korean journal of orthodontics
    • /
    • v.43 no.2
    • /
    • pp.54-61
    • /
    • 2013
  • Objective: The purpose of this study was to evaluate the effectiveness of the use of Reference Ear Plug (REP) during cone-beam computed tomography (CBCT) scan for the generation of lateral cephalograms from CBCT scan data. Methods: Two CBCT scans were obtained from 33 adults. One CBCT scan was acquired using conventional methods, and the other scan was acquired with the use of REP. Virtual lateral cephalograms created from each CBCT image were traced and compared with tracings of the real cephalograms obtained from the same subject. Results: CBCT scan with REP resulted in a smaller discrepancy between real and virtual cephalograms. In comparing the real and virtual cephalograms, no measurements significantly differed from real cephalogram values in case of CBCT scan with REP, whereas many measurements significantly differed in the case of CBCT scan without REP. Conclusion: Measurements from CBCT-generated cephalograms are more similar to those from real cephalograms when REP are used during CBCT scan. Thus, the use of REP is suggested during CBCT scan to generate accurate virtual cephalograms from CBCT scan data.

New Breast Measurement Technique and Bra Sizing System Based on 3D Body Scan Data

  • Oh, Seolyoung;Chun, Jongsuk
    • Journal of the Ergonomics Society of Korea
    • /
    • v.33 no.4
    • /
    • pp.299-311
    • /
    • 2014
  • Objective: The aim of this study was to develop a method for measuring breast size from three-dimensional (3D) body scan image data. Background: Previous bra studies established reference points by directly contacting the subject's naked skin to determine the boundary of the breast. But some subjects were uncomfortable with these types of measurements. This study examined noncontact methods of extracting breast reference points from 3D body scan data that were collected while subjects were wearing standardized soft bras. Method: 3D body scan data of 32 Korean women were analyzed. The subjects were selected from the Size Korea 2010 study. The breast landmarks were identified by graphic analyses of slicing contour lines on 3D body scan data. Results: Three methods determining bra cup size were compared. The M1 and M2 methods determined cup size by calculating the difference between bust girth and under-bust girth. The M3 method determined bra cup size by measuring breast arc length. Conclusion: The researchers proposed an anthropometric bra cup sizing system with the breast arc length (M3 method). It was measured from the geometrically defined landmarks on the 3D body scan slicing contour lines. The new bra cup size was highly correlated with breast depth. Application: The noncontact measuring method used in this study can be applied to the ergonomic studies measuring sensitive body parts.

Effects of NEX on SNR and Artifacts in Parallel MR Images Acquired using Reference Scan

  • Heo, Yeong-Cheol;Lee, Hae-Kag;Cho, Jae-Hwan
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.422-427
    • /
    • 2013
  • The aim of this study was to investigate effects of the number of acquisitions (NEX) on signal-to-noise (SNR) and artifacts in SENSE parallel imaging of magnetic resonance imaging (MRI). 3.0T MR System, 8 Channel sensitivity encoding (SENSE) head coils were used along with an in-vivo phantom. Reference sequence of 3D fast field echo (FFE) was consisted of NEX values of 2, 4, 6, 8, 10 and 12. The T2 turbo spin echo (TSE) sequence used for exams achieved SENSE factors of 1.2, 1.5, 1.8, 2.0, 2.2, 2.5, 2.8, 3.0, 3.2, 3.5, 3.8 and 4.0. Exams were conducted five times for each SENSE factor to measure signal intensity of the object, the posterior phase-encode direction and frequency direction. And SNR was calculated using mean values. SENSE artifacts were identified as background signal intensity in the phase-encoded direction using MRIcro. It was found that SNR increased but SENSE artifacts reduced with NEX of 4, 8 and 12 when the NEX increased in reference scan. It is therefore concluded that image quality can be improved with NEX of 4, 8 and 12 for reference scanning.

Zero-Sean-Back Reference Height Generation Filter (Zero-Scan-Back 기준 고도 생성 필터)

  • Whang, Ick-Ho;Ra, Won-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.386-388
    • /
    • 2007
  • In many applications of UAVs flying in low altitude, the steady supply of accurate height measurements is very important for the UAVs to complete their mission successfully. In order to do this, a barometer or GPS height measurements are widely used. However, because these two sensors have their limitations in the application environment, a method for fusing these two measurements to produce reference heights are required. In this paper, a reference height generation filter is designed for UAV(Unmanned Air Vehicle) applications. The barometer errors originated by the change of the atmospheric environment are modeled using random walk models, and then the errors are identified and compensated through the ZSB(zero-scan-back) filter algorithm using the GPS height measurements. The performance of the proposed filter is demonstrated by realistic simulations.

  • PDF

The study of MDCT of Radiation dose in the department of Radiology of general hospitals in the local area (일 지역 종합병원 영상의학과 MDCT선량에 대한 연구)

  • Shin, Jung-Sub
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.4
    • /
    • pp.281-290
    • /
    • 2012
  • The difference of radiation dose of MDCT due to different protocols between hospitals was analyzed by CTDI, DLP, the number of Slice and the number of DLP/Slice in 30 cases of the head, the abdomen and the chest that have 10 cases each from MDCT examination of the department of diagnostic imaging of three general hospitals in Gyeongsangbuk-do. The difference of image quality, CTDI, DLP, radiation dose in the eye and radiation dose in thyroid was analyzed after both helical scan and normal scan for head CT were performed because a protocol of head CT is relatively simple and head CT is the most frequent case. Head CT was significantly higher in two-thirds of hospitals compared to A hospital that does not exceed a CTDI diagnostic reference level (IAEA 50mGy, Korea 60mGy) (p<0.001). DLP was higher in one-third of hospitals than a diagnostic reference level of IAEA 1,050mGy.cm and Korea 1,000mGy.cm and two-thirds exceeded the recommendation of Korea and those were significantly higher than A hospital that does not exceed a diagnostic reference level (p<0.001). Abdomen CT showed 119mGy that was higher than a diagnostic reference level of IAEA 25mGy and Korea 20mGy in one-third. DLP in all hospitals was higher that Korea recommendation of 700mGy.cm. Among target hospitals, C hospital showed high radiation dose in all tests because MPR and 3D were of great importance due to low pitch and high Tube Curren. To analyze the difference of radiation dose by scan methods, normal scan and helical scan for head CT of the same patient were performed. In the result, CTDI and DLP of helical CT were higher 63.4% and 93.7% than normal scan (p<0.05, p<0.01). However, normal scan of radiation dose in thyroid was higher 87.26% (p<0.01). Beam of helical CT looked like a bell in the deep part and the marginal part so thyroid was exposed with low radiation dose deviated from central beam. In addition, helical scan used Gantry angle perpendicularly and normal scan used it parallel to the orbitomeatal line. Therefore, radiation dose in thyroid decreased in helical scan. However, a protocol in this study showed higher radiation dose than diagnostic reference level of KFDA. To obey the recommendation of KFDA, low Tube Curren and high pitch were demanded. In this study, the difference of image quality between normal scan and helical scan was not significant. Therefore, a standardized protocol of normal scan was generally used and protective gear for thyroid was needed except a special case. We studied a part of CT cases in the local area. Therefore, the result could not represent the entire cases. However, we confirmed that patient's radiation dose in some cases exceeded the recommendation and the deviation between hospitals was observed. To improve this issue, doctors of diagnostic imaging or technologists of radiology should perform CT by the optimized protocol to decrease a level of CT radiation and also reveal radiation dose for the right to know of patients. However, they had little understanding of the situation. Therefore, the effort of relevant agencies with education program for CT radiation dose, release of radiation dose from CT examination and addition of radiation dose control and open CT contents into evaluation for hospital services and certification, and also the effort of health professionals with the best protocol to realize optimized CT examination.

Palatal vault configuration and its influence on intraoral scan time and accuracy in completely edentulous arches: a prospective clinical study

  • Dina Mohamed Ahmed Elawady;Wafaa Ibrahim Ibrahim;Radwa Gamal Ghanem;Reham Bassuni Osman
    • The Journal of Advanced Prosthodontics
    • /
    • v.16 no.4
    • /
    • pp.201-211
    • /
    • 2024
  • PURPOSE. The aim of this prospective clinical study was to compare the influence of palatal vault forms on accuracy and speed of intraoral (IO) scans in completely edentulous cases. MATERIALS AND METHODS. Based on the palatal vault form, participants were divided into three equal groups (n = 10 each); Class I: moderate; Class II: deep; Class III: flat palatal vault. A reference model was created for each patient using polyvinylsiloxane impression material. The poured models were digitized using an extraoral scanner. The resultant data were imported as a solid CAD file into 3D analysis software (GOM Inspect 2018; Gom GmbH, Braunschweig, Germany) and aligned using the software's coordinate system to determine its X, Y, and Z axes. Five digital impressions (DIs) of maxilla were captured for each patient using an intraoral scanner (TRIOS; 3Shape A/S, Copenhagen, Denmark) and the resultant Standard Tessellation Language (STL) scan files served as test models. Trueness was evaluated by calculating arithmetic mean deviation (AMD) of the vault area between reference and test files while precision was evaluated by calculating AMD between captured scans to measure repeatability of scan acquisition. The scan time taken for each participant was also recorded. RESULTS. There was no significant difference in trueness and precision among the groups (P = .806 and .950, respectively). Average scan time for Class I and III palatal vaults was 1 min 13 seconds and 1 min 37 seconds, respectively, while class II deep palatal vaults showed the highest scan time of 5 mins. CONCLUSION. Palatal vault form in edentulous cases has an influence on scan time. However, it does not have a substantial impact on the accuracy of the acquired scans.

Compensation for Spectral Variance in Scan-Based Planar Acoustical Holography (스캐닝 평면 음향 홀로그래피에서의 스펙트럴 분산 보정)

  • ;;J. S. Bolton
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.520-524
    • /
    • 2002
  • Multi-reference, scan-based Acoustical Holography is a useful measurement technique when insufficient microphones are available to measure a complete hologram at once. When the sound sources are stationary, the whole hologram can be constructed by joining together sub-holograms captured using a relatively small scan array. Here that approach is extended by the development of a formulation that explicitly includes the acoustical transfer functions between the reference microphones and the scanning microphones. Based on those expressions, a compensation procedure of spectral variance due to source-non-stationarity is proposed. It has been verified both numerically and experimentally that this procedure can help suppress spatially distributed noise caused by the source level non-stationarity that is always present in a measurement.

  • PDF

Impact of scanning strategy on the accuracy of complete-arch intraoral scans: a preliminary study on segmental scans and merge methods

  • Mai, Hai Yen;Mai, Hang-Nga;Lee, Cheong-Hee;Lee, Kyu-Bok;Kim, So-yeun;Lee, Jae-Mok;Lee, Keun-Woo;Lee, Du-Hyeong
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.2
    • /
    • pp.88-95
    • /
    • 2022
  • PURPOSE. This study investigated the accuracy of full-arch intraoral scans obtained by various scan strategies with the segmental scan and merge methods. MATERIALS AND METHODS. Seventy intraoral scans (seven scans per group) were performed using 10 scan strategies that differed in the segmental scan (1, 2, or 3 segments) and the scanning motion (straight, zigzag, or combined). The three-dimensional (3D) geometric accuracy of scan images was evaluated by comparison with a reference image in an image analysis software program, in terms of the arch shape discrepancies. Measurement parameters were the intermolar distance, interpremolar distance, anteroposterior distance, and global surface deviation. One-way analysis of variance and Tukey honestly significance difference post hoc tests were carried out to compare differences among the scan strategy groups (α = .05). RESULTS. The linear discrepancy values of intraoral scans were not different among scan strategies performed with the single scan and segmental scan methods. In general, differences in the scan motion did not show different accuracies, except for the intermolar distance measured under the scan conditions of a 3-segmental scan and zigzag motion. The global surface deviations were not different among all scan strategies. CONCLUSION. The segmental scan and merge methods using two scan parts appear to be reliable as an alternative to the single scan method for full-arch intraoral scans. When three segmental scans are involved, the accuracy of complete arch scan can be negatively affected.

Deviation of landmarks in accordance with methods of establishing reference planes in three-dimensional facial CT evaluation

  • Yoon, Kaeng Won;Yoon, Suk-Ja;Kang, Byung-Cheol;Kim, Young-Hee;Kook, Min Suk;Lee, Jae-Seo;Palomo, Juan Martin
    • Imaging Science in Dentistry
    • /
    • v.44 no.3
    • /
    • pp.207-212
    • /
    • 2014
  • Purpose: This study aimed to investigate the deviation of landmarks from horizontal or midsagittal reference planes according to the methods of establishing reference planes. Materials and Methods: Computed tomography (CT) scans of 18 patients who received orthodontic and orthognathic surgical treatment were reviewed. Each CT scan was reconstructed by three methods for establishing three orthogonal reference planes (namely, the horizontal, midsagittal, and coronal reference planes). The horizontal (bilateral porions and bilateral orbitales) and midsagittal (crista galli, nasion, prechiasmatic point, opisthion, and anterior nasal spine) landmarks were identified on each CT scan. Vertical deviation of the horizontal landmarks and horizontal deviation of the midsagittal landmarks were measured. Results: The porion and orbitale, which were not involved in establishing the horizontal reference plane, were found to deviate vertically from the horizontal reference plane in the three methods. The midsagittal landmarks, which were not used for the midsagittal reference plane, deviated horizontally from the midsagittal reference plane in the three methods. Conclusion: In a three-dimensional facial analysis, the vertical and horizontal deviations of the landmarks from the horizontal and midsagittal reference planes could vary depending on the methods of establishing reference planes.

2D Lower Body Flat Pattern of the Women in Their Twenties Using 3D Scan Data (3차원 인체 형상을 이용한 20대 여성의 하반신 전개패턴에 관한 연구)

  • Yoon, Mi-Kyung;Nam, Yun-Ja;Choi, Kyeng-Mi
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.5 s.164
    • /
    • pp.692-704
    • /
    • 2007
  • Recently, Basic patterns with excellent body fitness and automation availability are required to be developed in order to automate the patterns of women's clothes. In this study, this reference points, reference lines and segments were fixed onto 3D scan data for the lower body the women in their twenties, they were directly spread out to be 2D flat pattern to facilitate development into the design of slacks adhered closely to the human body such as special and highly-functional clothes, and then slacks 2D pattern was developed for the purpose of seeking scientific approach to the development into basic form slacks and 3d emotional pattern. For conversion of 3D pattern into 2D flat pattern, reference points and segments were created by using Rapid Form of 3D shape analysis software, and triangle mesh of the body surface of the created shape was developed with Auto CAD 2005. The correspondence between slacks and human body was examined by the fixation of major reference lines. Specially, the wearing characteristics of slacks were considered by the fixation of side lines in consideration of posture. As a result of using the way of development to constantly maintain the length while 3D triangle mesh is converted into 2D flat mesh, the shape was shown to be excellently reproduced, and the area of flat pattern was increased compared to the shape of parting plane. Also, the sunk-in curve like the brief line of front crotch length needed a cutting line when it was closely adhered, when mesh was overlapped, and the pattern area was smaller compared to the actual shape.