• Title/Summary/Keyword: reference parameter

Search Result 845, Processing Time 0.035 seconds

Robust control for external input perturbation using second order derivative of universal learning network

  • Ohbayashi, Masanao;Hirasawa, Kotaro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.111-114
    • /
    • 1996
  • This paper proposes a robust control method using Universal Learning Network(U.L.N.) and second order derivatives of U.L.N.. Robust control considered here is defined as follows. Even if external input (equal to reference input in this paper) to the system at control stage changes awfully from that at learning stage, the system can be controlled so as to maintain a good performance. In order to realize such a robust control, a new term concerning the perturbation is added to a usual criterion function. And parameter variables are adjusted so as to minimize the above mentioned criterion function using the second order derivative of the criterion function with respect to the parameters.

  • PDF

Torque shaping for near-minimum-time optimal slewing of 3-axis spacecraft (3축 위성체의 준최소시간 선회기동을 위한 입력형상최적화)

  • 김기석;김희섭;김유단
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1330-1333
    • /
    • 1997
  • In this paper, the optimal torque shaping is obtained for 3-axis rotation of a spacecraft. The true optimal 3-axis rotation of rigid spaeraft is first investigated via parameter optimization method with prescribed switching times. Input torque shape of the troque generating device mounted on the central hub is optimized using fourier Series expansion so that the spacecraft may slew while minimizing the vibration energy of flexible modes. Numerical results show that proposed method suggests a reference trahectory for open-loop control, and also verify that it can minimize the vibratory modes of the spacecraft during/after the rest-to-rest maneuver.

  • PDF

A Novel Neural Network Compensation Technique for PD-Like Fuzzy Controlled Robot Manipulators (PD 기반의 퍼지제어기로 제어된 로봇의 새로운 신경회로망 보상 제어 기술)

  • Song Deok-Hee;Jung Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.6
    • /
    • pp.524-529
    • /
    • 2005
  • In this paper, a novel neural network compensation technique for PD like fuzzy controlled robot manipulators is presented. A standard PD-like fuzzy controller is designed and used as a main controller for controlling robot manipulators. A neural network controller is added to the reference trajectories to modify input error space so that the system is robust to any change in system parameter variations. It forms a neural-fuzzy control structure and used to compensate for nonlinear effects. The ultimate goal is same as that of the neuro-fuzzy control structure, but this proposed technique modifies the input error not the fuzzy rules. The proposed scheme is tested to control the position of the 3 degrees-of-freedom rotary robot manipulator. Performances are compared with that of other neural network control structure known as the feedback error learning structure that compensates at the control input level.

Trajectory Control of Field Robot Using Adaptive Control and System Identification (적응제어 및 시스템 규명을 이용한 Field Robot의 궤적 제어)

  • Kim, Seung-Su;Seo, U-Seok;Yang, Sun-Yong;Lee, Byeong-Ryong;An, Gyeong-Gwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.9
    • /
    • pp.728-735
    • /
    • 2002
  • The Field robot means the machinery applied for outdoor tasks in construction, agriculture and undersea etc. In this study, to field-robotize a hydraulic excavator that is mostly used in construction working, we have developed an automatic excavation system and an adaptive control system. A model-reference adaptive controller has been designed based on the model that is obtained through off-line system identification. It is illustrated by computer simulations that the proposed control system gives good performance in the trajectory tracking control and the adaptation to parameter variation.

Adaptive Control for Tracking Trajectory of a Two-Wheeled Welding Mobile Robot with Unknown Parameters

  • Bui, Trong Hieu;Chung, Tan-Lam;Suh, Jin-Ho;Kim, Sang-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.191-196
    • /
    • 2003
  • This paper presents a method to design an adaptive controller for the kinematic model of a two-wheeled welding mobile robot (WMR) with unknown parameters. We propose a nonlinear controller based on the Lyapunov function to enhance the tracking properties of the WMR. The WMR can track any smooth curved welding path at a constant velocity of the welding point. The system has three degrees of freedom including two wheels and one torch slider. Torch slider motion is used for fast tracking. To design the tracking performance, the errors from WMR to steel wall is defined, and the controller is designed to drive the errors to zero as fast as possible. The effectiveness of the proposed controller is shown through simulation results.

  • PDF

Design of a Track Guidance Algorithm for Formation Flight of UAVs (무인기의 편대비행을 위한 트랙유도 알고리즘 설계)

  • Lee, Dongwoo;Lee, Jaehyun;Kim, Seungkeun;Suk, Jinyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.12
    • /
    • pp.1217-1224
    • /
    • 2014
  • This paper presents a modified track guidance algorithm for formation flight of multiple UAVs. The suggested guidance algorithm is the spatial version of the first order dynamic characteristics for a time-dependent system so the algorithm is able to generate a path without overshoot to track the desired line. A crucial design parameter is a spatial constant that controls the shape of the convergence to an assigned flight path similarly to a time constant. Reference flight trajectories are designed based on a two-dimensional vehicle model, and the performance of the proposed guidance law is verified by numerical simulation using rigid body UAV dynamics with MATLAB/Simulink Aerosim Blockset.

Self-Tuning Adaptive Control Using State Observer (상태 관측기를 이용한 자기-동조 적응 제어)

  • Kim, Yoon-Ho;Yoon, Byung-Do;Oh, Gi-Hong
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.223-226
    • /
    • 1991
  • In this paper, the problem of designing on adaptive controller for dc drives using state observers, which is operated under varying load conditions, is addressed. A robust self-tuning controller that can track a constant reference and reject constant load disturbances is also studied. This scheme is very attractive since the estimates of system parameters are available in real time. Parameter estimation is based on the recursive least squares method and the control algorithm of the pole placement technique. Also, state observer systems are applied. State observer systems are required to estimate the states quickly and exactly without being affected by the disturbances.

  • PDF

A design on robust multivariable model following servo system (강인한 다변수 모델 추종형 서보시스템의 구성에 관한 연구)

  • Hwang, C.S.;Choi, Y.K.;Lee, Y.W.;Choi, I.S.
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.370-373
    • /
    • 1991
  • This paper considers the linear multivariable model following servo system synthesis method in which linear optimal regulator problem is used to design controllers that make the response of the plant should be kept close to a specified ideal response of the model. The characteristics of this system is that the constructed system is robust in the presence of the constant disturbances or the parameter perturbations of the plant. Especially, the steady state offset is excluded for the ramp response of the model by direct feedforward compensator from the reference input.

  • PDF

Sensorless Operation of DC Motors Using State Observers and Compensators (상태 관측기 및 보상기를 이용한 전동기의 센서리스 운전)

  • Kim, Yoon-Ho;Yoon, Byung-Do;Yang, Chan-Mo
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.366-370
    • /
    • 1990
  • Generally, when servo system is used, various sensors are required to have comparison and compensation to the reference value. However, the sensors are relatively expensive, and cannot be always implemented because of the limit of space or the environmental conditions. In this paper, state observer systems without sensors are investigated. State observer systems are required to estimate the states quickly and exactly without being affected by the disturbances. Thus, in this paper, the effects of systems poles and observer poles are studies. In addition, the parameter variations are also considered to evaluate the effect of them to the observer based systems. Also, in this paper a whole system which includes compensators, observers and loads are considered and analysed by using numerical simulations.

  • PDF

Parameter Estimation for Vector Control of Induction Motors without Speed Sensors (속도센서 없는 유도전동기 백터제어 시스템의 파라메타 추정)

  • Kim, Sang-Uk;Kwon, Young-Gil;Kim, Young-Jo;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2088-2090
    • /
    • 1997
  • This paper consists of the speed sensorless vector control of induction motors with the estimation of rotor resistance. In the application of variable-speed induction motor drives, if an inaccurate rotor resistance is used because the rotor resistance can change due to skin effects and temperature variables, it is difficult to achieve a collect field orientation. In this paper, to overcome these difficulties adaptive algorithm is designed for rotor resistance identification. The proposed adaptive algorithm for rotor resistance estimation in the synchronous reference frame is applied by sliding mode current controller satisfing persistent excitation(PE) condition. Adaptive flux observer is here used for the purpose of estimating rotor flux and speed in the speed sensorless scheme. Computer simulations are carried out to verify the validity of the proposed algorithm.

  • PDF