• 제목/요약/키워드: reference gait generation

검색결과 8건 처리시간 0.023초

정상 성인의 운동역학적 보행분석 (A Study on Kinetic Gait Analysis of the Normal Adult)

  • 김건;윤나미
    • The Journal of Korean Physical Therapy
    • /
    • 제21권2호
    • /
    • pp.87-95
    • /
    • 2009
  • Purpose: This study reports the basic reference data of the specific gait parameters for Korean normal adults. Methods: The basic gait parameters were extracted from 73 Adults (35 men and 38 women), 18 to 33 years of age, using a Vicon MX motion analysis system. The segment kinetics, such as joint moment and power, was analyzed at the hip, knee and ankle. Results: The motion patterns are typically associated with a specific phase of the gait cycle. The temporal-spatial gait parameters of Korean normal adults, such as cadence, walking speed, stride length, single support and double support, were similar to the other western reference data. The kinetic parameters of Korean normal adults, such as joint moments of force, joint mechanical power generation or absorption and ground reaction forces, were also similar to other western reference datasets. Conclusion: This study demonstrates that objective gait analysis can be used to document the gait patterns of normal healthy adults. The techniques of 3-dimensional temporal-spatial gait parameters and kinematic parameters analysis can provide a detailed biomechanical description of a normal and pathological gait.

  • PDF

우리나라 연령별 보행분석 비교연구 (The Comparative Study on Age-associated Gait Analysis in Normal Korean)

  • 윤나미;윤희종;박장성;정화수;김건
    • The Journal of Korean Physical Therapy
    • /
    • 제22권2호
    • /
    • pp.15-23
    • /
    • 2010
  • Purpose: This study was done to establish reference data for temporo-spatial, kinematic and kinetic parameters for normal Koreans as they age. Methods: Normal adults and children without a previous history of musculoskeletal problems were enrolled in this study. The normal subjects were divided by age into three groups: Group I: children ($11.95{\pm}0.29$ years); Group II: young adults ($23.90{\pm}3.67$ years); Group III: older adults ($71.40{\pm}4.08$ years). The temporo-spatial and kinematic data were measured using 6 MX3 cameras while each subject walked through a 10 m walkway at a self-selected speed. The kinetic data were measured using 2 force plates and were calculated by inverse dynamics. Results: Motion patterns are typically associated with a specific phase of the gait cycle. Our results were as follows: 1. There were significant differences between the different age groups in temporo-spatial parameters such as cadence, double support, time of foot off, stride length, step length, and walking speed. 2. There were significant differences between the groups in kinematic parameters such as range of motion (ROM) of the hip, knee and ankle in the sagittal plane, ROM of the pelvis, hip and knee in the coronal plane and ROM of the pelvis, hip and ankle in the transverse plane. 3. There were significant differences between the groups in kinetic parameters such as joint moments of force, joint mechanical power generation or absorption and ground reaction forces. Conclusion: The results of this study can be utilized (a) as a reference for kinematic and kinetic data of gait analysis in normal Koreans, and (b) as an aide in evaluating and treating patients who have problems relating to gait.

2족 보행 로봇을 위한 허용 ZMP (Zero Moment Point) 영역의 활용을 통한 에너지 효율적인 기준 보행 궤적 생성 (Energy-Efficient Reference Walking Trajectory Generation Using Allowable ZMP (Zero Moment Point) Region for Biped Robots)

  • 신혁기;김병국
    • 제어로봇시스템학회논문지
    • /
    • 제17권10호
    • /
    • pp.1029-1036
    • /
    • 2011
  • An energy-efficient reference walking trajectory generation algorithm is suggested utilizing allowable ZMP (Zero-Moment-Point) region, which maxmizes the energy efficiency for cyclic gaits, based on three-dimensional LIPM (Linear Inverted Pendulum Model) for biped robots. As observed in natural human walking, variable ZMP manipulation is suggested, in which ZMP moves within the allowable region to reduce the joint stress (i.e., rapid acceleration and deceleration of body), and hence to reduce the consumed energy. In addition, opimization of footstep planning is conducted to decide the optimal step-length and body height for a given forward mean velocity to minimize a suitable energy performance - amount of energy required to carry a unit weight a unit distance. In this planning, in order to ensure physically realizable walking trajectory, we also considered geometrical constraints, ZMP stability condition, friction constraint, and yawing moment constraint. Simulations are performed with a 12-DOF 3D biped robot model to verify the effectiveness of the proposed method.

도립진자형 이족보행로봇의 유연한 궤적 생성 (A Smooth Trajectory Generation for an Inverted Pendulum Type Biped Robot)

  • 노경곤;공정식;김진걸;강찬수
    • 한국정밀공학회지
    • /
    • 제22권7호
    • /
    • pp.112-121
    • /
    • 2005
  • This paper is concerned with smooth trajectory generation of biped robot which has inverted pendulum type balancing weight. Genetic algorithm is used to generate the trajectory of the leg and balancing weight. Balancing trajectory can be determined by solving the second order differential equation under the condition that the reference ZMP (Zero moment point) is settled. Reference ZMP effect on gait pattern absolutely but the problem is how to determine the reference ZMP. Genetic algorithm can find optimal solution under the high order nonlinear situation. Optimal trajectory is generated when use genetic algorithm which has some genes and a fitness function. In this paper, minimization of balancing joints motion is used for the fitness function and set the weight factor of the two balancing joints at the fitness function. Inverted pendulum type balancing weight is very similar with human and this model can be used fur humanoid robot. Simulation results show ZMP trajectory and the walking experiment made on the real biped robot IWR-IV.

Experimental Study on Modifiable Walking Pattern Generation for Handling Infeasible Navigational Commands

  • Hong, Young-Dae;Lee, Bumjoo
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권6호
    • /
    • pp.2368-2375
    • /
    • 2015
  • To accommodate various navigational commands, a humanoid should be able to change its walking motion in real time. Using the modifiable walking pattern generation (MWPG) algorithm, a humanoid can handle dynamic walking commands by changing its walking period, step length, and direction independently. If the humanoid is given a command to perform an infeasible movement, the algorithm substitutes the infeasible command with a feasible one using binary search. The feasible navigational command is subsequently translated into the desired center-of-mass (CM) state. Every sample time CM reference is generated using a zero-moment-point (ZMP) variation scheme. Based on this algorithm, various complex walking patterns can be generated, including backward and sideways walking, without detailed consideration of the feasibility of the navigational commands. In a previous study, the effectiveness of the MWPG algorithm was verified by dynamic simulation. This paper presents experimental results obtained using the small-sized humanoid robot platform DARwIn-OP.

Dynamic Simulation of Modifiable Walking Pattern Generation to Handle Infeasible Navigational Commands for Humanoid Robots

  • Hong, Young-Dae;Lee, Ki-Baek;Lee, Bumjoo
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권3호
    • /
    • pp.751-758
    • /
    • 2016
  • The modifiable walking pattern generation (MWPG) algorithm can handle dynamic walking commands by changing the walking period, step length, and direction independently. When an infeasible command is given, the algorithm changes the command to a feasible one. After the feasibility of the navigational command is checked, it is translated into the desired center of mass (CM) state. To achieve the desired CM state, a reference CM trajectory is generated using predefined zero moment point (ZMP) functions. Based on the proposed algorithm, various complex walking patterns were generated, including backward and sideways walking. The effectiveness of the patterns was verified in dynamic simulations using the Webots simulator.

목표 ZMP 궤적 기반 휴머노이드 로봇 이족보행의 최적 관절궤적 생성 (Optimal Joint Trajectory Generation for Biped Walking of Humanoid Robot based on Reference ZMP Trajectory)

  • 최낙윤;최영림;김종욱
    • 로봇학회논문지
    • /
    • 제8권2호
    • /
    • pp.92-103
    • /
    • 2013
  • Humanoid robot is the most intimate robot platform suitable for human interaction and services. Biped walking is its basic locomotion method, which is performed with combination of joint actuator's rotations in the lower extremity. The present work employs humanoid robot simulator and numerical optimization method to generate optimal joint trajectories for biped walking. The simulator is developed with Matlab based on the robot structure constructed with the Denavit-Hartenberg (DH) convention. Particle swarm optimization method minimizes the cost function for biped walking associated with performance index such as altitude trajectory of clearance foot and stability index concerning zero moment point (ZMP) trajectory. In this paper, instead of checking whether ZMP's position is inside the stable region or not, reference ZMP trajectory is approximately configured with feature points by which piece-wise linear trajectory can be drawn, and difference of reference ZMP and actual one at each sampling time is added to the cost function. The optimized joint trajectories realize three phases of stable gait including initial, periodic, and final steps. For validation of the proposed approach, a small-sized humanoid robot named DARwIn-OP is commanded to walk with the optimized joint trajectories, and the walking result is successful.

휴머노이드 로봇 모델을 이용한 보행재활 훈련장치의 견인모터 속도 파형 생성 (Generation of Motor Velocity Profile for Walking-Assistance System Using Humanoid Robot Model)

  • 최영림;최낙윤;박상일;김종욱
    • 한국지능시스템학회논문지
    • /
    • 제22권5호
    • /
    • pp.631-638
    • /
    • 2012
  • 본 논문은 슬관절 손상 환자의 하지근력 강화 재활훈련 장치에서 다리를 끌어주는 견인모터의 속도 프로파일을 휴머노이드 로봇 시뮬레이션을 통해 계산하는 방법을 새롭게 제안한다. 먼저 인체의 구조를 본 딴 휴머노이드 로봇의 3차원 전신 모델을 새롭게 구축하고, 표준 관절각도 데이터를 이 모델에 적용하여 자연스러운 보행을 시뮬레이션 했다. 그리고 하지의 대퇴부에 부착되어 있는 벨트와 견인모터와의 거리를 매 샘플링 타임에서 계산하여 이로부터 속도 프로파일을 도출하는 방식으로 보행 중 속도 파형을 생성한다. 휴머노이드 로봇의 기구학적 방법으로는 직진 보행에서 계산량이 적은 투영법을 사용했으며, 유각기의 관절 각도 프로파일은 Winter의 표준보행 데이터를 참조했다. 본 논문에서 제안한 방법으로 계산된 인체 특정부위 속도 프로파일은 제작 중인 트레드밀 재활훈련 장치에 적용될 예정이다.