본 논문에서는 HEVC(High Efficiency Video Coding) 부호화 속도 향상을 위한 최대 부호화깊이 및 참조영상 고속결정 방법을 제안한다. 본 논문에서는 계산 복잡도 감소와 속도향상을 위하여 크게 두 가지 방법을 제안한다. 첫 번째 방법에서는 LCU(Largest Coding Unit)내 각 CU(Coding Unit)의 최대 부호화 깊이를 제한하며, 이때 공간적인 상관성을 기반으로 주변 LCU에서 사용된 최대 부호화 깊이와 율-왜곡 비용을 이용한다. 두 번째 방법에서는 각 CU의 다양한 PU(Prediction Unit) 중, 화면간 예측을 수행하는 PU에 대해서 참조영상을 제한하며, 이때 상위 깊이 PU의 움직임 정보를 이용한다. 제안하는 방법은 항상 최대 깊이까지 부호화를 수행하는 것을 적응적으로 제한하고, 상당한 복잡도를 요구하는 움직임 예측을 수행하는 PU의 참조영상 수를 제한함으로써 계산 복잡도를 감소시킬 수 있으며, 기존의 HEVC 참조 소프트웨어인 HM6.1 대비 약 1.2% 정도의 비트율이 증가하면서 약 39%의 복잡도 감소 효과를 얻을 수 있었다.
Near infrared reflectance spectroscopy (NIRS) was used as a rapid and non-destructive method to determine the protein content in intact and ground seeds of pea (Pisum sativum L.) germplasms grown in Korea. A total of 115 samples were scanned in the reflectance mode of a scanning monochromator at intact seed and flour condition, and the reference values for the protein content was measured by auto-Kjeldahl system. In the developed ground and intact NIRS equations for analysis of protein, the most accurate equation were obtained at 2, 8, 6, 1 math treatment conditions with standard normal variate and detrend scatter correction method and entire spectrum (400-2,500 nm) by using modified partial least squares regression (n=78). External validation (n=34) of these NIRS equations showed significant correlation between reference values and NIRS estimated values based on the standard error of prediction (SEP), $R^2$, and the ratio of standard deviation of reference data to SEP. Therefore, these ground and intact NIRS equations can be applicable and reliable for determination of protein content in pea seeds, and non-destructive NIRS method could be used as a mass analysis technique for selection of high protein pea in breeding program and for quality control in food industry.
본 논문에서는 다중 셀 환경에서 전체 생 용량을 향상시키기 위하여 부분공간 간섭 정렬 (Sub-space Interference Alignment) 기법을 위한 새로운 레퍼런스 벡터 설정 알고리즘을 제안한다. 송신단에서 임의의 동일한 레퍼런스 벡터를 사용하여 전송 벡터를 생성하고, 수신단에서 이와 직교하는 벡터를 사용하여 정렬된 간섭 신호를 제거하는 기존의 부분공간 간섭 정렬 기법의 경우, 사용되는 레퍼런스 벡터 및 채널 상황에 따라 전체 시스템 용량이 달라지는 문제점을 가지고 있다. 이에 본 논문에서는 레퍼런스 벡터와 채널의 변화에 의해 전체 시스템의 합용량이 변화하는 문제점 및 레퍼런스 벡터 원소들의 크기 분산이 작아질수록 합용량이 향상되는 경향을 보임을 분석한다. 이러한 분석을 바탕으로 새로운 레퍼런스 벡터 설정 방법으로 레퍼런스 벡터 원소들의 크기 분산을 고려하여 설정하는 알고리즘을 제안하며, 모의실험을 통해 기존 알고리즘과 비교하여 제안된 알고리즘이 평균적으로 약 50% 정도 향상된 합용량을 나타냄을 확인한다.
In this paper, we apply several pattern recognition algorithms to emotion recognition system with speech signal and compare the results. Firstly, we need emotional speech databases. Also, speech features for emotion recognition is determined on the database analysis step. Secondly, recognition algorithms are applied to these speech features. The algorithms we try are artificial neural network, Bayesian learning, Principal Component Analysis, LBG algorithm. Thereafter, the performance gap of these methods is presented on the experiment result section. Truly, emotion recognition technique is not mature. That is, the emotion feature selection, relevant classification method selection, all these problems are disputable. So, we wish this paper to be a reference for the disputes.
In this paper, we apply several pattern recognition algorithms to emotion recognition system with speech signal and compare the results. Firstly, we need emotional speech databases. Also, speech features for emotion recognition is determined on the database analysis step. Secondly, recognition algorithms are applied to these speech features. The algorithms we try are artificial neural network, Bayesian learning, Principal Component Analysis, LBG algorithm. Thereafter, the performance gap of these methods is presented on the experiment result section. Truly, emotion recognition technique is not mature. That is, the emotion feature selection, relevant classification method selection, all these problems are disputable. So, we wish this paper to be a reference for the disputes.
In this paper, an attempt has been made to design the current and speed proportional and integral (PI) regulators of self-commutating current source inverter-fed induction motor drive having capacitors at the machine end and to investigate the transient performance of the same for step changes in reference speed. The mathematical model of the complete drive system is developed in closed loop, and the characteristic equations of the systems are derived using perturbation about steady-state operating point in order to develop the characteristic equations. The D-partition technique is used for finding the stable region in the parametric plane. Frequency scanning technique is used to confirm the stability region. Final selection of the regulator parameters is done by comparing the transient response of the current and speed loops for step variations in reference. The performance of the drive is observed analytically through MATLAB simulation.
The purpose of this study is to analyze the effect of Super-insulation for self-sufficient house. The process of the study is presented in the following. 1) selection reference model for simulation and verification of reference model with computer simulation program(DOE2.1E and ESP-r 9.0). 2) analysis of effect according to insulation-thickness, installed insulation position, kinds of windows, rate of infiltration, Finally, the results of this study will be to provide the most reasonable method concerned with self-sufficient house.
KSII Transactions on Internet and Information Systems (TIIS)
/
제7권11호
/
pp.2657-2675
/
2013
A novel neighbor selection-based fingerprinting algorithm using matrix correlation (MC) for Wi-Fi localization is presented in this paper. Compared with classic fingerprinting algorithms that usually employ a single received signal strength (RSS) sample, the presented algorithm uses multiple on-line RSS samples in the form of a matrix and measures correlations between the on-line RSS matrix and RSS matrices in the radio-map. The algorithm makes efficient use of on-line RSS information and considers RSS variations of reference points (RPs) for localization, so it offers more accurate localization results than classic neighbor selection-based algorithms. Based on the MC algorithm, an error estimation method using artificial neural network is also presented to fuse available information that includes RSS samples and localization results computed by the MC algorithm and model the nonlinear relationship between the available information and localization errors. In the on-line phase, localization errors are estimated and then used to correct the localization results to reduce negative influences caused by a static radio-map and RP distribution. Experimental results demonstrate that the MC algorithm outperforms the other neighbor selection-based algorithms and the error estimation method can reduce the mean of localization errors by nearly half.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권2호
/
pp.771-789
/
2019
Text detection has been a popular research topic in the field of computer vision. It is difficult for prevalent text detection algorithms to avoid the dependence on datasets. To overcome this problem, we proposed a novel unsupervised text detection algorithm inspired by bootstrap learning. Firstly, the text candidate in a novel form of superpixel is proposed to improve the text recall rate by image segmentation. Secondly, we propose a unique text sample selection model (TSSM) to extract text samples from the current image and eliminate database dependency. Specifically, to improve the precision of samples, we combine maximally stable extremal regions (MSERs) and the saliency map to generate sample reference maps with a double threshold scheme. Finally, a multiple kernel boosting method is developed to generate a strong text classifier by combining multiple single kernel SVMs based on the samples selected from TSSM. Experimental results on standard datasets demonstrate that our text detection method is robust to complex backgrounds and multilingual text and shows stable performance on different standard datasets.
Purpose: Selection-optimization-compensation (SOC) models have been proposed and applied to various populations to examine successful aging from a multidimensional perspective. This study aimed to develop a scale to measure SOC strategy among late middle-aged women (aged 50 to 64 years) and to test its validity and reliability. Methods: Preliminary items were developed through a literature review and interviews. Overall, 32 preliminary items were confirmed via two rounds of expert content validity analysis and a pilot survey. Data were collected from 299 late middle-aged women and analyzed using IBM SPSS/PC+ version 27.0. Construct validity, criterion validity, and reliability tests were conducted. Results: The SOC strategy scale, reflecting the characteristics of late middle-aged women and developed through exploratory factor analysis, comprised 19 items across four factors: goal-oriented selection, compensation for loss, outcome optimization, and ability-based optimization. The scale explained 66.9% of the variance in total factors, with a Cronbach's α of .95. Statistically significant correlations with the reference scale (r=.30, p<.001) were observed. Conclusion: The developed scale demonstrated high validity and reliability, thus representing a viable instrument for measuring SOC strategy among late middle-aged women. Using this scale to assess the use of SOC approaches in these women can improve our understanding of the aging process and help establish supportive programs for their aging journeys.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.