• Title/Summary/Keyword: reference energy

Search Result 1,629, Processing Time 0.026 seconds

Evaluation of coolant density history effect in RBMK type fuel modelling

  • Tonkunas, Aurimas;Pabarcius, Raimоndas;Slavickas, Andrius
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2415-2421
    • /
    • 2020
  • The axial heterogeneous void distribution in a fuel channel is a relevant and important issue during nuclear reactor analysis for LWR, especially for boiling water channel-type reactors. Variation of the coolant density in fuel channel has an effect on the neutron spectrum that will in turn have an impact on the values of absolute reactivity, the void reactivity coefficient, and the fuel isotopic compositions during irradiation. This effect is referring to as the history effect in light water reactor calculations. As the void reactivity effect is positive in RBMK type reactors, the underestimation of water density heterogeneity in 3D reactor core numerical calculations could cause an uncertainty during assessment of safe operation of nuclear reactor. Thus, this issue is analysed with different cross-section libraries which were generated with WIMS8 code at different reference water densities. The libraries were applied in single fuel model of the nodal code of QUABOX-CUBBOX/HYCA. The thermohydraulic part of HYCA allowed to simulate axial water distribution along fuel assembly model and to estimate water density history effect for RBMK type fuel.

A Study on the Operation Methods of Multipurpose BIPV System by Numerical Analysis (수치 계산을 통한 다목적 BIPV 시스템의 운전방법에 관한 연구)

  • Kim, Eui-Jong;Kim, Heon-Joong;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.1
    • /
    • pp.49-55
    • /
    • 2006
  • The Multipurpose BIPV System(MBIPVS) was evaluated as an effective passive system through analyzing the thermal performance and the efficiency of PV power generation in the previous papers. To achieve the performance better, the operation method should be determined by considering physical conditions in each occasion. Thus, we cheesed the reference operation methods in each season set by the overview of the meteorological data for last 6 years, In-choen, and compared them with the various alternatives that we had made up with for improving thermal performance. The results from adopting various alternatives on MBIPVS showed that the appropriate operational model would be effective to the energy savings ; we could reduce the total loads 1,051.0[kWh] in summer and 108.9[kWh] in winter.

A Bottom-up Approach for Greenhouse Gas Emission Analysis of Korean Shipbuilding Industry (상향식 모형을 이용한 국내 조선업의 온실가스 배출 분석)

  • Paik, Chunhyun;Kim, Hugon;Kim, Young Jin;Chung, Yongjoo
    • Korean Management Science Review
    • /
    • v.31 no.1
    • /
    • pp.41-48
    • /
    • 2014
  • This study presents a bottom-up approach for analyzing greenhouse gas (GHG) emissions for the shipbuilding industry in Korea. The overall procedures for deriving GHG emissions from the Korean shipbuilding industry are presented. Based on the long-term forecast on energy demands of the Korean shipbuilding industry, reference energy system (RES) and energy balance (EB) for the shipbuilding process are derived for bottom-up modeling.

A Study on the Neutron Activation Analysis for the Determination of Mercury in Biological Samples (생체시료중 수은의 정량을 위한 중성자 방사화분석에 관한 연구)

  • Lee Chul;Kim, Nak Bae;Lee Ihn Chong
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.3
    • /
    • pp.163-168
    • /
    • 1975
  • Rice and fish samples as well as a standard reference kale sample have been analyzed for the mercury content using two independent methods, i.e., one developed previously in this laboratory and the other reported by Sjostrand. The analytical results indicate differences in matrix effects depending on the type of sample, e.g., kale and fish samples show the same matrix effects, whereas rice samples show different effects compared to others.

  • PDF

An Energy Efficient Routing Scheme with Tabu Search Algorithm (타부 탐색 알고리즘을 적용한 전력 효율적 라우팅 기법)

  • Yan, Shi;Hong, Won-Kee
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.10 no.3
    • /
    • pp.86-91
    • /
    • 2011
  • Wireless sensor network (WSN) is a distributed self-organizing network which contains a large number of tiny multi-functional sensor nodes. The network life time is an important issue in WSN because every sensor node has a constraint on electric supply. In this paper, an energy consumption model is described and a GA-based algorithm will be used to optimize the energy consumption by analyzing the working model of sensor nodes. The model will provide an effective reference of working pattern for WSN. This algorithm is evaluated through analysis and simulations.

  • PDF

Neural Network Controller for a Permanent Magnet Generator Applied in Wind Energy Conversion System

  • Eskander, Mona N.
    • Journal of Power Electronics
    • /
    • v.2 no.1
    • /
    • pp.46-54
    • /
    • 2002
  • In this paper a neural network controller for achieving maximum power tracking as well as output voltage regulation, for a wind energy conversion system (WECS) employing a permanent magnet synchronous generator is proposed. The permanent magnet generator (PMG) supplies a dc load via a bridge rectifier and two buck-boost converters. Adjusting the switching frequency of the first buck-boost converter achieves maximum power tracking. Adjusting the switching frequency of the second buck-boost converter allows output voltage regulation. The on-time of the switching devices of the two converters are supplied by the developed neural network (NN). The effect of sudden changes in wind speed and/ or in reference voltage on the performance of the NN controller are explored. Simulation results showed the possibility of achieving maximum power tracking and output voltage regulation simulation with the developed neural network controllers. The results proved also the fast response and robustness of the proposed control system.

Domestic Status of Solar Thermal Collectors and Hot Water Heaters (태양열 집열기 및 온수기에 대한 국내 현황)

  • Kim, Seok-Jong
    • Solar Energy
    • /
    • v.11 no.3
    • /
    • pp.84-88
    • /
    • 1991
  • In this technical status report, domestic solar makers and dealers for thermal collectors and hot water heaters are surveyed. The characteristics and specifications of their items are also classified and discussed. Collectors and hot water heaters are the key part of solar thermal systems which have been developed under the national policy for the development and utilization of new and renewable energy resources. This report provides the current domestic status of solar collectors which may be a good reference for the solar industry and related organizations.

  • PDF

Experimental Measurement and Monte Carlo Simulation the Correction Factor for the Medium-Energy X-ray Free-air Ionization Chamber

  • Yu, Jili;Wu, Jinjie;Liao, Zhenyu;Zhou, Zhenjie
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1466-1472
    • /
    • 2018
  • A key comparison has been made between the air-kerma standards of the National Institute of Metrology (NIM), China, and other Asia Pacific Metrology Programme (APMP) members in the medium-energy X-ray. This paper reviews the primary standard Free-air ionization chamber correction factor experimental method and Monte Carlo simulation method in the NIM. The experimental method and the Monte Carlo simulation method are adopted to obtain the correction factor for the medium-energy X-ray primary standard free-air ionization chamber at 100 kV, 135 kV, 180 kV, 250 kV four CCRI reference qualities. The correction factor has already been submitted to the APMP as key comparison data and the results are in good agreement with those obtained in previous studies. This study shows that the experimental method and the EGSnrc simulation method are usually used in the measurement of the correction factor. In particular, the application of the simulation methods is more common.

Effect of initial coating crack on the mechanical performance of surface-coated zircaloy cladding

  • Xu, Ze;Liu, Yulan;Wang, Biao
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1250-1258
    • /
    • 2021
  • In this paper, the mechanical performance of cracked surface-coated Zircaloy cladding, which has different coating materials, coating thicknesses and initial crack lengths, has been investigated. By analyzing the stress field near the crack tip, the safety zone range of initial crack length has been decided. In order to determine whether the crack can propagate along the radial (r) or axial (z) directions, the energy release rate has been calculated. By comparing the energy release rate with fracture toughness of materials, we can divide the initial crack lengths into three zones: safety zone, discussion zone and danger zone. The results show that Cr is suitable coating material for the cladding with a thin coating while Fe-Cr-Al have a better fracture mechanical performance in the cladding with thick coating. The Si-coated and SiC-coated claddings are suitable for reactors with low power fuel elements. Conclusions in this paper can provide reference and guidance for the cladding design of nuclear fuel elements.

Beryllium oxide utilized in nuclear reactors: Part II, A systematic review of the neutron irradiation effects

  • Ming-dong Hou;Xiang-wen Zhou;Bing Liu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.408-420
    • /
    • 2023
  • Beryllium oxide (BeO) is being re-emphasized and utilized in Micro Modular Reactors (MMR) because of its prominent nuclear and high temperature properties in recent years. The implications of the research about effects of neutron irradiation on the microstructure and properties of BeO are significant. This article comprehensively reviews the effects of neutron irradiation on BeO and proposes the maximum permissible neutron doses at different temperatures for BeO without cracks in appearance according to the data in the previous literature. This maximum permissible neutron dose value has important reference significance for the experimental study of BeO. The effects of neutron irradiation on the thermal conductivity and flexural strength of BeO are also discussed. In addition, microstructure evolution of irradiated BeO during post-irradiation annealing is summarized. This review article has important implications for the application of BeO in MMR.