• Title/Summary/Keyword: reference energy

Search Result 1,629, Processing Time 0.027 seconds

CHARACTERISTICS OF A NEW PNEUMATIC TRANSFER SYSTEM FOR A NEUTRON ACTIVATION ANALYSIS AT THE HANARO RESEARCH REACTOR

  • Chung, Yong-Sam;Kim, Sun-Ha;Moon, Jong-Hwa;Baek, Sung-Yeol;Kim, Hark-Rho;Kim, Young-Jin
    • Nuclear Engineering and Technology
    • /
    • v.41 no.6
    • /
    • pp.813-820
    • /
    • 2009
  • A rapid pneumatic transfer system (PTS) for an instrumental neutron activation analysis (INAA) is developed as an automatic irradiation facility involving the measurement of a short half-life nuclide and a delayed neutron counting system. Three new PTS designs with improved functions were constructed at the HANARO research reactor in 2006. The new system is composed of a manual system and an automatic system for both an INAA and a delayed neutron activation analysis (DNAA). The design and basic conception of a modified PTS are described, and the functions of system operation and control, radiation protection and emissions of radioactive gas are improved. In addition, a form of capsule transportation of these systems is tested. The experimental results pertaining to the irradiation characteristics with variation of the neutron flux and the temperature of the irradiation position with the irradiation time are presented, as is an analysis of the reference material for analytical quality control and uncertainty assessments.

Comparison of first criticality prediction and experiment of the Jordan research and training reactor (JRTR)

  • Kim, Kyung-O.;Jun, Byung Jin;Lee, Byungchul;Park, Sang-Jun;Roh, Gyuhong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.14-18
    • /
    • 2020
  • Korea Atomic Energy Research Institute (KAERI) has carried out various neutronics experiments in the commissioning stage of the Jordan Research and Training Reactor (JRTR), and this paper introduces the results of first criticality prediction and experiment for the JRTR. The Monte Carlo Code for Advanced Reactor Design and analysis (McCARD) with the ENDF/B-VII.0 nuclear library was used for prediction calculations in the process of the first criticality approach, which was performed to provide reference for the first criticality experiment. In the experiment, fuel loading was carried out by measuring the inverse multiplication factor (1/M) to predict the number of fuel assemblies at the first criticality, and the first critical was reached on April 25, 2016. Comparing the first criticality prediction and experiment, the calculated and measured CAR (Control Absorber Rod) heights for the first criticality were 575 mm and 570.5 mm, respectively, that is, the difference between the two results was approximately 5 mm. From this result, it was confirmed that JRTR manufacturing and various experiments had successfully progressed as designed.

Measurement of the Elemental Composition in Airborne Particulate Matter Using Instrumental Neutron Activation Analys

  • Chung, Yong-Sam;Lim, Jong-Myoung;Moon, Jong-Hwa;Kim, Sun-Ha;Cho, Hyun-Je;Kim, Young-Jin
    • Nuclear Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.450-459
    • /
    • 2004
  • For the evaluation of emission sources by air sampling, airborne particulate matter for fine (<2.5 ${\mu}m2$ EAD : $PM_{2.5}$) and coarse partical (2.5-10 ${\mu}m2$ EAD : $PM_{2.5-10}$ fractions were collected using a Gent stacked filter unit low volume sampler and two types of polycarbonate filters. Air samples were collected twice monthly at two regions in and around Daejeon city in the Republic of Korea from January to December 2002. Monthly mass concentration of $PM_{2.5}$ and $PM_{2.5-10}$ were measured and the concentrations of 10 marker elements (Al, Sc, Ti ; Na, Cl ; As, V. Sb, Br, Se) were determined by an instrumental neutron activation analysis. Analytical quality control was corried out using certified reference materials. Enrichment factors were also calculated from the monitoring data to classify the anthropogenic and crustal origins.

A Review on the Definition Methods of Prototypical Office Building for Energy Analysis (에너지해석용 표준 업무용건물의 정의방법에 관한 연구 리뷰)

  • Kim, Hye-Jin;Seo, Dong-Hyun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.3
    • /
    • pp.103-111
    • /
    • 2018
  • A prototypical building that represents the energy characteristics of buildings can be used as a mean of improving building energy efficiency by supporting policy makers, researchers, architects and engineers. This paper is a fundamental study for the definition of prototypical office building models of Korea. First of all, the term "prototypical buildings" was defined in the context of the representatives of building stock by examining the meanings used from many previous researches. Then, building energy related DB of Korea that is available from public and governmental organization such as MLIT (Ministry of Land, Infrastructure and Transport) and KEEI (Korea Energy Economics Institute) is analyzed in terms of materials for prototypical building definition. Finally, numerous prototypical building studies since 1990's from all of the world were classified with three criteria based on the degrees of the used DB and assumptions in defining prototypical building. The found three criteria are EDPB (Empirical Decision based Prototypical Building), HIPB (Hybrid Information based Prototypical Building) SAPB (Statistical Analysis based Prototypical Building).

Study on transient performance of tilting-pad thrust bearings in nuclear pump considering fluid-structure interaction

  • Qiang Li;Bin Li;Xiuwei Li;Quntao Xie;Qinglei Liu;Weiwei Xu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2325-2334
    • /
    • 2023
  • To study the lubrication performance of tilting-pad thrust bearing (TPTBs) during start-up in nuclear pump, a hydrodynamic lubrication model of TPTBs was established based on the computational fluid dynamics (CFD) method and the fluid-structure interaction (FSI) technique. Further, a mesh motion algorithm for the transient calculation of thrust bearings was developed based on the user defined function (UDF). The result demonstrated that minimum film thickness increases first and then decreases with the rotational speed under start-up condition. The influence of pad tilt on minimum film thickness is greater than that of collar movement at low speed, and the establishment of dynamic pressure mainly depends on pad tilt and minimum film thickness increases. As the increase of rotational speed, the influence of pad tilt was abated, where the influence of the moving of the collar dominated gradually, and minimum film thickness decreases. For TPTBs, the circumferential angle of the pad is always greater than the radial angle. When the rotational speed is constant, the change rate of radial angle is greater than that of circumferential angle with the increase of loading forces. This study can provide reference for improving bearing wear resistance.

An Estimation of Greenhouse Gases (GHGs) Emissions from Energy Sector in Changwon City and Scenario Analysis Based on the Application of Carbon Neutral by 2050 in Korea (2050 탄소중립 시나리오를 적용한 창원시 에너지부문 온실가스 배출산정 및 시나리오 분석 )

  • Ha-Neul Kim;Jae-Hyung Jung
    • Journal of Environmental Science International
    • /
    • v.32 no.6
    • /
    • pp.419-428
    • /
    • 2023
  • This study estimates the greenhouse gases (GHGs) emissions from energy sector of Changwon city from 2012 to 2020 and scenario analysis of GHGs reductions pathways in the context of the goal of 2030 NDC and 2050 carbon neutral scenario in Korea. As a result, the GHG emissions as a reference year of carbon neutral in 2018 were estimated as 8,872,641 tonCO2eq accounting for 3,851,786 tonCO2eq (43.6%) of direct source (scope 1) and 4,975,855 tonCO2eq (56.4%) of indirect source (scope 2). Especially, among indirect sources as purchased electricity, manufacturing sector emitted the largest GHG accounting for 33.0%(2,915 thousands tonCO2eq) of the total emissions from all energy sectors, scenario analysis of GHG reductions potential from the energy was analyzed 8,473,614 tonCO2eq and the residual emissions were 354,027 tonCO2eq. Purchased electricity and industry sector reducted the largest GHG accounting for 58.7%(4,976 thousands tonCO2eq) and 42.1%(3,565 thousands tonCO2eq) of the total emissions from all energy sectors, respectively.

Comparison of Environmental Radiation Survey Analysis Results in a High Dose Rate Environment Using CZT, NaI(Tl), and LaBr3(Ce) Detectors

  • Sungyeop Joung;Wanook Ji;Eunjung Lee;Young-Yong Ji;Yoomi Choi
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.4
    • /
    • pp.543-558
    • /
    • 2023
  • Currently, Japan is undertaking a nationwide project to measure and map radioactive contamination around Fukushima, as part of the efforts to restore normalcy following the nuclear accident. The Japan Atomic Energy Agency (JAEA) manages the Fukushima Environmental Safety Center, located approximately 20 km north of the Fukushima Daiichi nuclear power plant in Minamisōma City, Fukushima Prefecture. In collaboration with the JAEA, this study involved conducting comparison experiments and analyses with radiation detectors in high radiation environments, a challenging task in Korean environments. Environmental radiation surveys were conducted using three types of detectors: CZT, NaI(Tl), and LaBr3(Ce), across two contaminated areas. Dose rate values were converted using dose rate conversion factors for each detector type, and dose rate maps were subsequently created and compared. The detectors yielded similar results, demonstrating their feasibility and reliability in high radiation environments. The findings of this study are expected to be a crucial reference for enhancing the verification and supplementation of procedures and methods in future radiation measurements and mobile surveys in high-radiation environments, using these three types of radiation instruments.

Severe accident analysis induced by secondary pipeline break in a small modular PWR

  • Xiaolong Bi;Jie Chen;Peiwei Sun;Xinyu Wei
    • Nuclear Engineering and Technology
    • /
    • v.56 no.10
    • /
    • pp.4263-4279
    • /
    • 2024
  • The small modular PWR (SMPWR) usually adopts integral design. Under severe accident, the system responses are different from those large PWRs. It is necessary to study the severe accident behavior of the SMPWR. A MELCOR model is developed for SMPWR and its steady-state results are in good agreement with the design values. Severe accidents induced by secondary pipeline break accidents are simulated, and no pressure relief measures are taken to keep the primary loop under high pressure. The mitigation effects of passive containment air cooling system (PAS) and passive cavity injection system (PCIS) are evaluated under different cases. The results show that under high pressure conditions, PCIS can effectively cool the lower head. The earlier the PCIS operates, the more significant the mitigation effect can be. In addition, PAS can effectively reduce the peak pressure and temperature in the containment. This study can provide a reference for the formulation of severe accident management guidelines on SMPWRs.

Calculation of Vertical Wind Profile Exponents and Its Uncertainty Evaluation - Jeju Island Cases (풍속고도분포지수 산정 및 불확도 평가 - 제주도 사례)

  • Kim, You-Mi;Kim, Hyun-Goo;Kang, Yong-Heack;Yun, Chang-yeol;Kim, Jin-Young;Kim, Chang Ki;Kim, Shin-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.4
    • /
    • pp.11-20
    • /
    • 2016
  • For accurate wind resource assessment and wind turbine performance test, it is essential to secure wind data covering a rotor plane of wind turbine including a hub height. In general, we can depict wind speed profile by extrapolating or interpolating the wind speed data measured from a meteorological tower where multiple anemometers are mounted at different heights using a power-law of wind speed profile. The most important parameter of a power-law equation is a vertical wind profile exponent which represents local characteristics of terrain and land cover. In this study, we calculated diurnal vertical wind profile exponents of 8 locations in Jeju Island who possesses excellent wind resource according to the GUM (Guide to the Expression of Uncertainty in Measurement) to evaluate its uncertainty. Expanded uncertainty is calculated by combined standard uncertainty, which is the result of composing type A standard uncertainty with type B standard uncertainty. Although pooled standard deviation should be considered to derive type A uncertainty, we used the standard deviation of vertical wind profile exponent of each day avoiding the difficult of uncertainty evaluation of diurnal wind profile variation. It is anticipated that the evaluated uncertainties of diurnal vertical wind profile exponents at 8 locations in Jeju Island are to be registered as a national standard reference data and widely used in the relevant areas.

Comparative Analysis on the Characteristic of Typical Meteorological Year Applying Principal Component Analysis (주성분분석에 의한 TMY 특성 비교분석)

  • Kim, Shin Young;Kim, Chang Ki;Kang, Yong Heack;Yun, Chang Yeol;Jang, Gil Soo;Kim, Hyun-Goo
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.3
    • /
    • pp.67-79
    • /
    • 2019
  • The reliable Typical Meteorological Year (TMY) data, sometimes called Test Reference Year (TRY) data, are necessary in the feasibility study of renewable energy installation as well as zero energy building. In Korea, there are available TMY data; TMY from Korea Institute of Energy Research (KIER), TRY from the Korean Solar Energy Society (KSES) and TRY from Passive House Institute Korea (PHIKO). This study aims at examining their characteristics by using Principle Component Analysis (PCA) at six ground observing stations. First step is to investigate the annual averages of meteorological elements from TMY data and their standard deviations. Then, PCA is done to find which principle components are derived from different TMY data. Temperature and solar irradiance are determined as the main principle component of TMY data produced by KIER and KSES at all stations whereas TRY data from PHIKO does not show similar result from those by KIER and KSES.