• Title/Summary/Keyword: reference body measurement

Search Result 117, Processing Time 0.031 seconds

A STUDY ON THE TEMPERATURE CHANGES OF BONE TISSUES DURING IMPLANT SITE PREPARATION (임플랜트 식립부위 형성시 골조직의 온도변화에 관한 연구)

  • Kim Pyung-Il;Kim Yung-Soo;Jang Kyung-Soo;Kim Chang-Whe
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.1
    • /
    • pp.1-17
    • /
    • 2002
  • The purpose of this study is to examine the possibility of thermal injury to bone tissues during an implant site preparation under the same condition as a typical clinical practice of $Br{\aa}nemark$ implant system. All the burs for $Br{\aa}nemark$ implant system were studied except the round bur The experiments involved 880 drilling cases : 50 cases for each of the 5 steps of NP, 5 steps of RP, and 7 steps of WP, all including srew tap, and 30 cases of 2mm twist drill. For precision drilling, a precision handpiece restraining system was developed (Eungyong Machinery Co., Korea). The system kept the drill parallel to the drilling path and allowed horizontal adjustment of the drill with as little as $1{\mu}m$ increment. The thermocouple insertion hole. that is 0.9mm in diameter and 8mm in depth, was prepared 0.2mm away from the tapping bur the last drilling step. The temperatures due to countersink, pilot drill, and other drills were measured at the surface of the bone, at the depths of 4mm and 8mm respectively. Countersink drilling temperature was measured by attaching the tip of a thermocouple at the rim of the countersink. To assure temperature measurement at the desired depths, 'bent-thermocouples' with their tips of 4 and 8mm bent at $120^{\circ}$ were used. The profiles of temperature variation were recorded continuously at one second interval using a thermometer with memory function (Fluke Co. U.S.A.) and 0.7mm thermocouples (Omega Co., U.S.A.). To simulate typical clinical conditions, 35mm square samples of bovine scapular bone were utilized. The samples were approximately 20mm thick with the cortical thickness on the drilling side ranging from 1 to 2mm. A sample was placed in a container of saline solution so that its lower half is submerged into the solution and the upper half exposed to the room air, which averaged $24.9^{\circ}C$. The temperature of the saline solution was maintained at $36.5^{\circ}C$ using an electric heater (J. O Tech Co., Korea). This experimental condition was similar to that of a patient s opened mouth. The study revealed that a 2mm twist drill required greatest attention. As a guide drill, a twist drill is required to bore through a 'virgin bone,' rather than merely enlarging an already drilled hole as is the case with other drills. This typically generates greater amount of heat. Furthermore, one tends to apply a greater pressure to overcome drilling difficulty, thus producing even greater amount heat. 150 experiments were conducted for 2mm twist drill. For 140 cases, drill pressure of 750g was sufficient, and 10 cases required additional 500 or 100g of drilling pressure. In case of the former. 3 of the 140 cases produced the temperature greater than $47^{\circ}C$, the threshold temperature of degeneration of bone tissue (1983. Eriksson et al.) which is also the reference temperature in this study. In each of the 10 cases requiring extra pressure, the temperature exceeded the reference temperature. More significantly, a surge of heat was observed in each of these cases This observations led to addtional 20 drilling experiments on dense bones. For 10 of these cases, the pressure of 1,250g was applied. For the other 10, 1.750g were applied. In each of these cases, it was also observed that the temperature rose abruptly far above the thresh old temperature of $47^{\circ}C$, sometimes even to 70 or $80^{\circ}C$. It was also observed that the increased drilling pressure influenced the shortening of drilling time more than the rise of drilling temperature. This suggests the desirability of clinically reconsidering application of extra pressures to prevent possible injury to bone tissues. An analysis of these two extra pressure groups of 1,250g and 1,750g revealed that the t-statistics for reduced amount of drilling time due to extra pressure and increased peak temperature due to the same were 10.80 and 2.08 respectively suggesting that drilling time was more influenced than temperature. All the subsequent drillings after the drilling with a 2mm twist drill did not produce excessive heat, i.e. the heat generation is at the same or below the body temperature level. Some of screw tap, pilot, and countersink showed negative correlation coefficients between the generated heat and the drilling time. indicating the more the drilling time, the lower the temperature. The study also revealed that the drilling time was increased as a function of frequency of the use of the drill. Under the drilling pressure of 750g, it was revealed that the drilling time for an old twist drill that has already drilled 40 times was 4.5 times longer than a new drill The measurement was taken for the first 10 drillings of a new drill and 10 drillings of an old drill that has already been used for 40 drillings. 'Test Statistics' of small samples t-test was 3.49, confirming that the used twist drills require longer drilling time than new ones. On the other hand, it was revealed that there was no significant difference in drilling temperature between the new drill and the old twist drill. Finally, the following conclusions were reached from this study : 1 Used drilling bur causes almost no change in drilling temperature but increase in drilling time through 50 drillings under the manufacturer-recommended cooling conditions and the drilling pressure of 750g. 2. The heat that is generated through drilling mattered only in the case of 2mm twist drills, the first drill to be used in bone drilling process for all the other drills there is no significant problem. 3. If the drilling pressure is increased when a 2mm twist drill reaches a dense bone, the temperature rises abruptly even under the manufacturer-recommended cooling conditions. 4. Drilling heat was the highest at the final moment of the drilling process.

Comparison of Radiation Dose in the Measurement of MDCT Radiation Dose according to Correction of Temperatures and Pressure, and Calibration of Ionization Chamber (MDCT 선량측정에서 온도와 압력에 따른 보정과 Ionization Chamber의 Calibration 전후 선량의 비교평가)

  • Lee, Chang-Lae;Kim, Hee-Joung;Jeon, Seong-Su;Cho, Hyo-Min;Nam, So-Ra;Jung, Ji-Young;Lee, Young-Jin;Lee, Seung-Jae;Dong, Kyung-Rae
    • Progress in Medical Physics
    • /
    • v.19 no.1
    • /
    • pp.49-55
    • /
    • 2008
  • This study aims to conduct the comparative analysis of the radiation dose according to before and after the calibration of the ionization chamber used for measuring radiation dose in the MDCT, as well as of $CTDI_w$ according to temperature and pressure correction factors in the CT room. A comparative analysis was conducted based on the measured MDCT (GE light speed plus 4 slice, USA) data using head and body CT dosimetric phantom, and Model 2026C electrometer (RADICAL 2026C, USA) calibrated on March 21, 2007. As a result, the $CTDI_w$ value which reflected calibration factors, as well as correction factors of temperature and pressure, was found to be the range of $0.479{\sim}3.162mGy$ in effective radiation dose than the uncorrected values. Also, under the routine abdomen routine CT image acquisition conditions used in reference hospitals, patient effective dose was measured to indicate the difference of the maximum of 0.7 mSv between before and after the application of such factors. These results imply that the calibration of the ion chamber, and the correction of temperature and pressure of the CT room are crucial in measuring and calculating patient effective dose. Thus, to measure patient radiation dose accurately, the detailed information should be made available regarding not only the temperature and pressure of the CT room, but also the humidity and recombination factor, characteristics of X-ray beam quality, exposure conditions, scan region, and so forth.

  • PDF

A Study on the Patient Exposure Doses from the Panoramic Radiography using Dentistry (치과 파노라마 촬영에서 환자의 피폭선량에 관한 연구)

  • Park, Ilwoo;Jeung, Wonkyo;Hwang, Hyungsuk;Lim, Sunghwan;Lee, Daenam;Im, Inchul;Lee, Jaeseung;Park, Hyonghu;Kwak, Byungjoon;Yu, Yunsik
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.1
    • /
    • pp.17-24
    • /
    • 2013
  • This study estimate radiation biological danger factor by measuring patient's exposed dose and propose the low way of patient's exposed dose in panoramic radiography. We seek correcting constant of OSL dosimeter for minimize the error of exposed dose's measurement and measure the Left, Right crystalline lens, thyroid, directly included upper, lower lips, the maxillary bone and the center of photographing that indirect included in panoramic radiography by using the human body model standard phantom advised in ICRP. In result, the center of photographing's level of radiation maximum value is $413.67{\pm}6.53{\mu}Gy$ and each upper, lower lips is $217.80{\pm}2.98{\mu}Gy$, $215.33{\pm}2.61{\mu}Gy$. Also in panoramic radiography, indirect included Left, Right crystalline lens's level of radiation are $30.73{\pm}2.34{\mu}Gy$, $31.87{\pm}2.50{\mu}Gy$, and thyroid's level of measured exposed dose can cause effect of radiation biological and we need justifiable analysis about radiation defense rule and substantiation advised international organization for the low way of patient's exposed dose in panoramic radiography of dental clinic and we judge need the additional study about radiation defense organization for protect the systematize protocol's finance and around internal organs for minimize until accepted by many people that is technological, economical and social fact by using panoramic measurement.

Accuracy of soft tissue Profile change prediction in mandibular set-back surgery patients: a comparison of Quick Ceph Image $Pro^{TM}$ (ver 3.0) and $V-Ceph^{TM}$(ver 3.5) (하악골 후퇴 수술 환자의 연조직 측모 예측의 정확성: Quick Ceph Image $Pro^{TM}$(ver 3.0)와 $V-Ceph^{TM}$(Ver 3.5)의 비교)

  • Kim, Myoung-Kyun;Choi, Yong-Sung;Chung, Song-Woo;Jeon, Young-Mi;Kim, Jong-Ghee
    • The korean journal of orthodontics
    • /
    • v.35 no.3 s.110
    • /
    • pp.216-226
    • /
    • 2005
  • The purpose of this study was to test and compare the accuracy and reliability of soft tissue profile predictions generated from two computer software programs (Quick Ceph Image $Pro^{TM}$ (ver 3.0) and $V-Ceph^{TM}$(ver 3.5)) for mandibular set-back surgery. The presurgical and postsurgical lateral cephalograms of 40 patients (20 males and 20 females) were traced on the same acetate paper with the reference taken as the cranial base outline. The presurgical skeletal outlines were digitized onto each computer program and the mandible was moved to mimic the expected surgical procedure with reverence to the mandibular anterior border and lower incisor position of the actual postsurgical skeletal outline. The soft tissue profile was generated and the amount and direction of skeletal movement was calculated with each software. The predicted soft tissue profile was compared to the actual postsurgical soft tissue profile. There were differences between the actual and the predicted surgical soft tissue profile charges in the magnitude and direction, especially the upper lip. lower lip and the soft tissue chin (P<0.05). Quick Ceph had more horizontal measurement errors and thickness errors for the upper lip and lower lip, but V-Ceph had more vertical measurement errors of the lower lip (P<0.05). There was a positive correlation between the prediction errors and the amount of mandibular movements in the vertical position of Sn, the horizontal position of Ls and the upper lip thickness for V-Ceph, and there was a negative correlation in the horizontal position and the thickness of the lower lip for Quick Ceph (P<0.05). However all of the Prediction errors of both imaging softwares were ranged within 3mm, and this was considered to be allowable clinically.

${T_2}weighted$- Half courier Echo Planar Imaging

  • 김치영;김휴정;안창범
    • Investigative Magnetic Resonance Imaging
    • /
    • v.5 no.1
    • /
    • pp.57-65
    • /
    • 2001
  • Purpose : $T_2$-weighted half courier Echo Planar Imaging (T2HEPI) method is proposed to reduce measurement time of existing EPI by a factor of 2. In addition, high $T_2$ contrast is obtained for clinical applications. High resolution single-shot EPI images with $T_2$ contrast are obtained with $128{\times}128$ matrix size by the proposed method. Materials and methods : In order to reduce measurement time in EPI, half courier space is measured, and rest of half courier data is obtained by conjugate symmetric filling. Thus high resolution single shot EPI image with $128{\times}128$ matrix size is obtained with 64 echoes. By the arrangement of phase encoding gradients, high $T_2$ weighted images are obtained. The acquired data in k-space are shifted if there exists residual gradient field due to eddy current along phase encoding gradient, which results in a serious problem in the reconstructed image. The residual field is estimated by the correlation coefficient between the echo signal for dc and the corresponding reference data acquired during the pre-scan. Once the residual gradient field is properly estimated, it can be removed by the adjustment of initial phase encoding gradient field between $70^{\circ}$ and $180^{\circ}$ rf pulses. Results : The suggested T2EPl is implemented in a 1.0 Tela whole body MRI system. Experiments are done with the effective echo times of 72ms and 96ms with single shot acquisitions. High resolution($128{\times}128$) volunteer head images with high $T_2$ contrast are obtained in a single scan by the proposed method. Conclusion : Using the half courier technique, higher resolution EPI images are obtained with matrix size of $128{\times}128$ in a single scan. Furthermore $T_2$ contrast is controlled by the effective echo time. Since the suggested method can be implemented by software alone (pulse sequence and corresponding tuning and reconstruction algorithms) without addition of special hardware, it can be widely used in existing MRI systems.

  • PDF

A Study of Radiation Incidence Angle in Anteroposterior Cervical Vertebra Examination (경추 정면 검사에서 방사선 입사각에 관한 연구)

  • Jeung, Seung-Woon;Lim, Cheong-Hwan;Han, Beom-Hee;Jung, Hong-Ryang;Joo, Yeong-Cheol;Park, Mi-Ja
    • Journal of radiological science and technology
    • /
    • v.35 no.2
    • /
    • pp.83-92
    • /
    • 2012
  • In anteroposterior projection for cervical vertebra, it is general that the incidence angle of X-ray is $15^{\circ}$ to $20^{\circ}$ degrees to head in order to prevent overlap of mandible and occipital bone and to observe array of cervical interbody and shapes of joints. However, the angle is appropriate for foreigners that was determined by foreign literature review long ago, and there have been few researches of incidence angle for Koreans' body type. The purpose of in this study are to identify the incidence angle appropriate for Koreans and to present methodology. In order to measure the incidence angle, 1,044 patients who visited S Hospital located in Seosan were selected and measured of average length of cervical vertebra, OID, axis angle, and FID. The incidence angle was calculated from the applied formula by measuring average values per age groups and sex (see Formula 1 and 2). The average length of cervical vertebra was 6cm: the length was increased from teenagers to twenties but was decreased since thirties. The difference between males and females was around 1cm (p<.01). The OID was almost the same regardless of age groups and sex. As for axis angle, the slope was increased in teenagers and twenties, but was decreased since thirties. The difference between males and females was around 2 degrees (p<.01). The FID measurements were almost the same regardless of age groups and sex, and when the incidence angle was measured from these values, the teenagers were $15.9^{\circ}$, the twenties were $16.9^{\circ}$, the thirties were $16.6^{\circ}$, the forties were $16.2^{\circ}$, the fifties were $15.9^{\circ}$, and the sixties were $14.5^{\circ}$, indicating that the angle was increased from teenagers to the twenties but decreased since the thirties. While the angles of males and females were measured to be the same in the teenagers, the angle was different between males and females by $2^{\circ}$. When the incidence angle statistically analyzed with measurement of average length of cervical vertebra, OID, axis angle, and FID, all of them were shown to have correlations with the incidence angle (p<.01). Conclusively, it was shown that the incidence angle was measured differently from average length of cervical vertebra, OID, FID, and axis slope, as well as from age and sex. Therefore, it can be suggested that the anteroposterior radiation test for cervical vertebra should be conducted by different incidence angles based on age and sex. The data of this study may be used as reference in determining the incidence angle of cervical vertebra tests for the future.

Analysis of the Range Verification of Proton using PET-CT (Off-line PET-CT를 이용한 양성자치료에서의 Range 검증)

  • Jang, Joon Young;Hong, Gun Chul;Park, Sey Joon;Park, Yong Chul;Choi, Byung Ki
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.2
    • /
    • pp.101-108
    • /
    • 2017
  • Purpose: The proton used in proton therapy has a characteristic of giving a small dose to the normal tissue in front of the tumor site while forming a Bragg peak at the cancer tissue site and giving up the maximum dose and disappearing immediately. It is very important to verify the proton arrival position. In this study, we used the off-line PET CT method to measure the distribution of positron emitted from nucleons such as 11C (half-life = 20 min), 150 (half-life = 2 min) and 13N The range and distal falloff point of the proton were verified by measurement. Materials and Methods: In the IEC 2001 Body Phantom, 37 mm, 28 mm, and 22 mm spheres were inserted. The phantom was filled with water to obtain a CT image for each sphere size. To verify the proton range and distal falloff points, As a treatment planning system, SOBP were set at 46 mm on 37 mm sphere, 37 mm on 28 mm, and 33 mm on 22 mm sphere for each sphere size. The proton was scanned in the same center with a single beam of Gantry 0 degree by the scanning method. The phantom was scanned using PET-CT equipment. In the PET-CT image acquisition method, 50 images were acquired per minute, four ROIs including the spheres in the phantom were set, and 10 images were reconstructed. The activity profile according to the depth was compared to the dose profile according to the sphere size established in the treatment plan Results: The PET-CT activity profile decreased rapidly at the distal falloff position in the 37 mm, 28 mm, and 22 mm spheres as well as the dose profile. However, in the SOBP section, which is a range for evaluating the range, the results in the proximal part of the activity profile are different from those of the dose profile, and the distal falloff position is compared with the proton therapy plan and PET-CT As a result, the maximum difference of 1.4 mm at the 50 % point of the Max dose, 1.1 mm at the 45 % point at the 28 mm sphere, and the difference at the 22 mm sphere at the maximum point of 1.2 mm were all less than 1.5 mm in the 37 mm sphere. Conclusion: To maximize the advantages of proton therapy, it is very important to verify the range of the proton beam. In this study, the proton range was confirmed by the SOBP and the distal falloff position of the proton beam using PET-CT. As a result, the difference of the distally falloff position between the activity distribution measured by PET-CT and the proton therapy plan was 1.4 mm, respectively. This may be used as a reference for the dose margin applied in the proton therapy plan.

  • PDF