• Title/Summary/Keyword: redundancy assessment

Search Result 41, Processing Time 0.016 seconds

Development of a Framework for Evaluating Water Quality in Estuarine Reservoir Based on a Resilience Analysis Method (회복탄력성 분석 기반 담수호 수질 평가 프레임워크 개발)

  • Hwang, Soonho;Jun, Sang Min;Kim, Kyeung;Kim, Seok Hyun;Lee, Hyunji;Kwak, Jihae;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.5
    • /
    • pp.105-119
    • /
    • 2020
  • Although there have been a lot of efforts to improve water quality in the estuarine reservoir, overall the water quality problems of the estuarine reservoirs remain. So, it is essential to establish water quality management plans under a comprehensive understanding of the environmental characteristics of the estuarine reservoir. Therefore, in this study, a resilience analysis framework for evaluating the estuarine reservoir's water quality was suggested for improving existing assessment method for water quality management plan. First, as a result of analyzing the static resilience to each scenario, it was found that from the S3 scenario in which dredging was conducted considerably, the resilience of about 30% more than the current estuarine reservoir system was restored. Second, as a result of analyzing the dynamic resilience, if cost and time are considered, there is no significant difference in robustness and resourcefulness, so it can be seen that the resilience of the estuarine reservoir can be efficiently improved by simply performing dredging up to the level of Scenario 3. Finally, as a result of comparing static and dynamic resilience, since static resilience is only presented as a single value, the differences and characteristics of the resilience capacity of the estuarine reservoir might be overlooked only by the static resilience analysis. However, in the aspect that it is possible to interpret the internal recovery capacity of the estuarine reservoir in multiple ways with various indicators (robustness, redundancy, resourcefulness, rapidity), evaluating water quality based on dynamic resilience analysis is useful.