• Title/Summary/Keyword: reduction-oxidation current

Search Result 116, Processing Time 0.026 seconds

The micosporine-like amino acids-rich aqueous methanol extract of laver (Porphyra yezoensis) inhibits adipogenesis and induces apoptosis in 3T3-L1 adipocytes

  • Kim, Hyunhee;Lee, Yunjung;Han, Taejun;Choi, Eun-Mi
    • Nutrition Research and Practice
    • /
    • v.9 no.6
    • /
    • pp.592-598
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Increased mass of adipose tissue in obese persons is caused by excessive adipogenesis, which is elaborately controlled by an array of transcription factors. Inhibition of adipogenesis by diverse plant-derived substances has been explored. The aim of the current study was to examine the effects of the aqueous methanol extract of laver (Porphyra yezoensis) on adipogenesis and apoptosis in 3T3-L1 adipocytes and to investigate the mechanism underlying the effect of the laver extract. MATERIALS/METHODS: 3T3-L1 cells were treated with various concentrations of laver extract in differentiation medium. Lipid accumulation, expression of adipogenic proteins, including CCAAT enhancer-binding protein ${\alpha}$, peroxisome proliferator-activated receptor ${\gamma}$, fatty acid binding protein 4, and fatty acid synthase, cell viability, apoptosis, and the total content and the ratio of reduced to oxidized forms of glutathione (GSH/GSSG) were analyzed. RESULTS: Treatment with laver extract resulted in a significant decrease in lipid accumulation in 3T3-L1 adipocytes, which showed correlation with a reduction in expression of adipogenic proteins. Treatment with laver extract also resulted in a decrease in the viability of preadipocytes and an increase in the apoptosis of mature adipocytes. Treatment with laver extract led to exacerbated depletion of cellular glutathione and abolished the transient increase in GSH/GSSG ratio during adipogenesis in 3T3-L1 adipocytes. CONCLUSION: Results of our study demonstrated that treatment with the laver extract caused inhibition of adipogenesis, a decrease in proliferation of preadipocytes, and an increase in the apoptosis of mature adipocytes. It appears that these effects were caused by increasing oxidative stress, as demonstrated by the depletion and oxidation of the cellular glutathione pool in the extract-treated adipocytes. Our results suggest that a prooxidant role of laver extract is associated with its antiadipogenic and proapoptotic effects.

The Modified Electrode by PEDOP with MWCNTs-Palladium Nanoparticles for the Determination of hydroquinone and Catechol

  • Naranchimeg, Orogzodmaa;Kim, Seul-Ki;Jeon, Seung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2771-2775
    • /
    • 2011
  • Poly-ethylenedioxypyrrole (PEDOP) coated thiolated multiwall carbon nanotubes palladium nanoparticles (MWCNTs-Pd) modified glassy carbon electrode (GCE) [PEDOP/MWCNTs-Pd/GCE] for the determination of hydroquinone (HQ) and it’s isomer catechol (CA) were synthesized and compared with bare GCE and thiolated multiwall carbon nanotubes (MWCNTs-SH/GCE). The modification could be made by simple processes on a GCE with MWCNTs-Pd covered by PEDOP in a 0.05 M tetrabutylammonium perchlorate (TBAP)/MeCN solution system. A well-defined peak potential evaluation of the oxidation of hydroquinone to quinone at 0.05 V (vs. Ag/AgCl), and electrochemical reduction back to hydroquinone were found by cyclic voltammetry (CV) in phosphate buffered saline (PBS) at pH 7.4. Peak current values increased linearly with increasing hydroquinone contents. The peak separation between the anodic and cathodic peaks at the PEDOP/MWCNTs-Pd/GCE was ${\Delta}Ep$ = 40 mV for HQ and ${\Delta}Ep$ = 70 mV for CA, resulting in a higher electron transfer rate. Moreover, good reproducibility, excellent storage stability, a wide linear range (0.1 ${\mu}M$ - 5 mM for HQ and 0.01 ${\mu}M$ - 6 mM for CA), and low detection limits ($2.9{\times}10^{-8}$ M for HQ and $2.6{\times}10^{-8}$ M for CA; S/N = 3) were determined using differential pulse voltammetry (DPV) and amperometric responses; this makes it a promising candidate as a sensor for determination of HQ and CA.

Characteristics of Plasma Blacks Used as an Electrode of Direct Formic Acid Fuel Cell

  • Park, Young-Sook;Choi, Jong-Ho;Han, Jong-Hee;Lim, Tae-Hoon;Beak, Young-Soon;Ju, Jeh-Beck;Shon, Tae-Won;Lee, Joong-Kee
    • Carbon letters
    • /
    • v.6 no.1
    • /
    • pp.41-46
    • /
    • 2005
  • Plasma carbon blacks of 20~30 nm diameter were synthesized by direct decomposition of natural gas using a hybrid plasma torch system with 50 kW direct current and 4 MHz of radio frequency. The insulating rector which inside diameter of 400 mm and length of 1500 mm, respectively was kept at 300~$400^{\circ}C$ during the preparation. The ultimate analysis of plasma carbon blacks reveals that the raw plasma carbon blacks contains a large quantity of volatile which is mainly consist of hydrogen. Therefore devolatilization of raw plasma carbon blacks were carried out at $900^{\circ}C$ for one hour under nitrogen atmosphere. The devolatilization leads to the decrease in electrical resistivity and surface oxygen functional groups of plasma carbon black significantly. In order to investigate the plasma carbon as a catalyst support, devolatilized plasma black at $900^{\circ}C$ (DPB) supported PtAu catalyst was synthesized by sodium boronhydride reduction method. Electrochemical measurements and direct formic acid fuel cell test indicated that catalytic activity of DPB supported PtAu catalyst for formic acid oxidation was similar to that of Vulcan XC-72 of commercial carbon black supported one.

  • PDF

The Effects of Addition Timing of NaCl and Sodium Tripolyphosphate and Cooking Rate on Pink Color in Cooked Ground Chicken Breasts

  • Bae, Su Min;Cho, Min Guk;Jeong, Jong Youn
    • Food Science of Animal Resources
    • /
    • v.40 no.2
    • /
    • pp.231-241
    • /
    • 2020
  • The current study investigated the effects of timing of NaCl (2%) and sodium tripolyphosphate (STPP, 0.5%) addition and cooking rates on color and pigment properties of ground chicken breasts. Four treatments were tested as follows: treatment 1, no NaCl and STPP added and stored for 7 d; treatment 2, NaCl+STPP added on 0 d and stored for 7 d; treatment 3, NaCl added on 0 d and STPP added on 7 d; and treatment 4, stored for 7 d and NaCl+STPP added. All samples were cooked at a fast (5.67℃/min) or slow cooking rate (2.16℃/min). Regardless of the timing of NaCl and STPP addition, reflectance ratios of nitrosyl hemochrome, cooking yield, pH values, oxidation-reduction potential, and percent myoglobin denaturation were similar (p>0.05) across treatments 2, 3, and 4. The highest CIE a values were observed in treatment 4 (p<0.05), while treatment 2 was effective in reducing the redness in cooked chicken products. The fast cooking rate resulted in lower CIE a values and higher CIE L values and cooking yield in cooked chicken breasts compared to the slow cooking rate. Our results indicate that adding NaCl and STPP to meat, followed by storing and cooking at a fast rate, may result in inhibiting the pink color defect sporadically occurred in cooked ground chicken breasts.

Atmospheric Effects on Growth Kinetics and Electronic Properties of Passive Film of Aluminum in Borate Buffer Solution (Borate 완충용액에서 알루미늄의 산화피막의 생성과정과 전기적 성질에 대한 대기의 영향)

  • Kim, Younkyoo
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.3
    • /
    • pp.169-176
    • /
    • 2016
  • In a borate buffer solution, the growth kinetics and the electronic properties of passive film on aluminum were investigated, using the potentiodynamic method, chronoamperometry, and multi-frequency electrochemical impedance spectroscopy. The corrosion of aluminum was heavily influenced by the degree of oxygen concentration because of the increasing reduction current. The oxide film formed during the passivation process of aluminum has showed the electronic properties of n-type semiconductor, which follow from the Mott-Schottky equation. It was found out that the passive film (Al(OH)3) of Al formed in the low electrode potential changes to Al2O3 while the electrode potential increases. The growth kinetics data as measured by chronoamperometry suggests a mechanism in which the growth of the film of Al2O3 is determined by field-assisted transport of ions through the film.

A Zinc Porphyrin Sensitizer Modified with Donor and Acceptor Groups for Dye-Sensitized Solar Cells

  • Lee, Seewoo;Sarker, Ashis K.;Hong, Jong-Dal
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.3052-3058
    • /
    • 2014
  • In this article, we have designed and synthesized a novel donor-${\pi}$-acceptor (D-${\pi}$-A) type porphyrin-based sensitizer (denoted UI-5), in which a carboxyl anchoring group and a 9,9-dimethyl fluorene were introduced at the meso-positions of porphyrin ring via phenylethynyl and ethynyl bridging units, respectively. Long alkoxy chains in ortho-positions of the phenyls were supposed to reduce the degree of dye aggregation, which tends to affect electron injection yield in a photovoltaic cell. The cyclic voltammetry was employed to determine the band gap of UI-5 to be 1.41 eV based on the HOMO and LUMO energy levels, which were estimated by the onset oxidation and reduction potentials. The incident monochromatic photon-to-current conversion efficiency of the UI-5 DSSC assembled with double-layer (20 nm-sized $TiO_2$/400 nm-sized $TiO_2$) film electrodes appeared lower upon overall ranges of the excitation wavelengths, but exhibited a higher value over the NIR ranges (${\lambda}$ = 650-700 nm) compared to the common reference sensitizer N719. The UI-5-sensitized cell yielded a relatively poor device performance with an overall conversion efficiency of 0.74% with a short circuit photocurrent density of $3.05mA/cm^2$, an open circuit voltage of 0.54 mV and a fill factor of 0.44 under the standard global air mass (AM 1.5) solar conditions. However, our report about the synthesis and the photovoltaic characteristics of a porphyrin-based sensitizer in a D-${\pi}$-A structure demonstrated a significant complex relationship between the sensitizer structure and the cell performance.

A Study on the Development of Electrolysis System with Vertically Circulating Mercury Capillary Bundle Electrode and its Characteristics (수직형 순환식 수은 모세관 다발체 전극 전해계의 개발과 그 특성 연구)

  • Kim, Kwang-Wook;Lee, Eil-Hee;Shin, Young-Joon;Yoo, Jae-Hyung;Park, Hyun-Soo
    • Applied Chemistry for Engineering
    • /
    • v.7 no.2
    • /
    • pp.228-236
    • /
    • 1996
  • An electrolysis system with a vertically circulating mercury capillary bundle electrode was developed with a very large electrode area in a minimum space. This system was operated by forcedly feeding mercury and aqueous solution containing metal ion into a fiber bundle packed densely within a small porous glass tube. In order to test the characteristics and stability of the electrolysis system, the reduction voltammograms of uranyl and ferric ions were measured with changes of the mercury flow rate and the aqueous flow rate. The aqueous flow rate had a large effect on the electrochemical reaction of metal ion occurring at the interface between the mercury and the aqueous solution and had to be regulated as an appropriate value to have a good limiting current shape. The limiting current was linearly proportional to the aqueous flow rate, and complete reductions of uranyl and ferric ions were rapidly and continuously accomplished at the potential showing limiting current. With a mercury flow rate high enough to keep a capillary continuum of mercury in the fiber bundle, the mercury flow rate had almost no effect on the electrochemical reaction. This system was confirmed to be effective and stable enough to control rapidly and continuously the oxidation state of metal ions fed into the system under an appropriate aqueous flow rate.

  • PDF

Effect of Organic Matter and Moisture Content on Reduction of Cr(VI) in Soils by Zerovalent Iron (영가철에 의한 토양 Cr(VI) 환원에 미치는 유기물 및 수분함량 영향)

  • Yang, Jae-E.;Lee, Su-Jae;Kim, Dong-Kuk;Oh, Sang-Eun;Yoon, Sung-Hwan;Ok, Yong-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.1
    • /
    • pp.60-65
    • /
    • 2008
  • Current soil remediation principles for toxic metals have some limitations even though they vary with different technologies. An alternative technology that transforms hazardous substances into nonhazardous ones would be environmentally beneficial. Objective of this research was to assess optimum conditions for Cr(VI) reduction in soils as influenced by ZVI(Zero-Valent Iron), organic matter and moisture content. The reduction ratio of Cr(VI) was increased from 37 to 40% as organic matter content increased from 1.07 to 1.75%. In addition, Cr(VI) concentration was reduced as soil moisture content increased, but the direct effect of soil moisture content on Cr(VI) reduction was less than 5% of the Cr(VI) reduction ratio. However, combined treatment of ZVI(5%), organic matter(1.75%) and soil moisture(30%) effectively reduced the initial Cr(VI) to over 95% within 5 days and nearly 100% after 30 days by increasing oxidation of ZVI and concurrent reduction of Cr(VI) to Cr(III). The overall results demonstrated that ZVI was effective in remediating Cr(VI) contaminated soils, and the efficiency was synergistic with the combined treatments of soil moisture and organic matter.

Preparation of Nickel Hexacyanoferrate Ion Exchanger for Electrochemical Separation of Cations (양이온의 전기화학적 분리를 위한 페리시안니켈 이온교환체의 제조에 관한 연구)

  • Lee, Ji Hyun;Hwang, Young Gi
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.52-57
    • /
    • 2010
  • Although chemical sedimentation and ion exchange are usually applied to the treatment of heavy metal ions and radioactive cations, they have some serious disadvantages like a great consumption of chemicals, the disposal of valuable metals, and the secondary pollution of soil by the solid-waste. The advanced countries recently have studied the electrochemical ion exchange, combined electrochemical reduction and ion exchange, for the development of the alternative technique. This study has been performed to investigate the optimum condition for the preparation of the nickel hexacyanoferrate (NiHCNFe) which is an electrochemical ion exchanger. NiHCNFe film was deposited on the surface of nickel plate by chemical method or electrochemical method. The morphology and composition of NiHCNFe were observed by SEM and EDS, respectively. The peak current density of NiHCNFe was measured from the cyclic voltammograms of the continuous oxidation-reduction reaction in a parallel plane ion exchange electrode reactor. It was found that the chemical preparation method was better than the electrochemical method. The concentrated NiHCNFe was apparently deposited on nickel plate when dipping in the preparing solution for 118 h, especially. It also had a best durable performance as an ion exchange electrode.

Oxygen Reduction of PAFC Gas Diffusion Electrode with Various Pt Impregnation Methods (인산형 연료전지용 기체확산전극의 백금촉매 담지방법에 따른 산소환원 특성)

  • Yoo, Duck-Young;Eun, Yeong-Chan;Shim, Joong-Pyo;Lee, Ju-Seong
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.999-1005
    • /
    • 1996
  • Pt catalyst on carbon black was prepared by colloidal method, ion exchanging method and methanol reducing method. The colloidal method has been used generally. At ion exchanging method, $H^+$ of functional group on carbon surface made by oxidation treatment was exchanged with Pt ion. At methanol reducing method, Pt was impregnated on carbon to reduce by methanol contained with surfactants. With TEM and XRD, Pt particle size impregnated on carbon by various methods was $30{\sim}50{\AA}$. Loading yield was about 100%, loading yield of ion exchanging method was 99.92% by DCP analysis and 99.87% by combustion method. Within 60 hour, current density of oxygen reduction was $460mA/cm^2$ at 0.7V(vs. RHE) at colloidal method. It was the better performance than catalyst prepared by ion exchanging, methanol reducing method. But, it was shown some decrease of performance for long operation time(after 100hour), catalyst prepared by methanol reducing method was shown stable performance.

  • PDF