• Title/Summary/Keyword: reduction rate of pesticides

Search Result 10, Processing Time 0.019 seconds

The use of beneficial microorganisms to improve turfgrass quality and usability (유용미생물의 시용이 잔디의 질과 이용성에 미치는 영향)

  • 황연성;최준수
    • Asian Journal of Turfgrass Science
    • /
    • v.13 no.4
    • /
    • pp.201-212
    • /
    • 1999
  • In use of pesticides in golf courses has been increased steadily. Environmental concern as well as decrease in efficiency led the turfgrass management into an alternate approach of using beneficial microorganism to deal with turfgrass pests. This study was focused on the use of such microorganisms for improving cultural environment and minimizing the use of pesticides. Microorganisms antagonistic to turfgrass diseases were applied to zoysiagrass fairways and creeping bentgrass greens in Yusung country club. Tharch accumulation, disease occurrence, and other cultural environments were compared among the combinations of microorganisms and suppliemental N applications. The application of microorganisms antagonistic to turfgrass diseases improved turf resiliency. Thatch thickness was 3.03cm in the control plot but it was 2.11cm in plots treated by microorganisms, indicating significant effects of microorganism application on reduction of thatch accumulation. Number of microorganism that can decompose of cellulose was higher at the plots treated with useful microbial products and it was considered that existence of higher population of microorganisms resulted in reduction of thatch accumulation. In the evaluation of relationship between thatch accumulation and disease occurrence, greater thatch accumulation was observed at the golf courses which have been frequently infested by large patch. However, the rate of thatch accumulation varied among surveyed golf courses regardless of the year of turf establishment. Therefore, management practice which can be effective for reduction of thatch could result in large patch suppression. The application of microorganisms on the established turfgrasses reduced the occurrence rate of pythium blight and yellow path diseases, whereas occurrence of brown patch and dollar spot increased.

Reduction Rate of Azoxystrobin, Fenhexamid and Cyprodinil during Ginseng Processing (홍삼 가공중 azoxystrobin, fenhexamid 및 cyprodinil농약의 감소율)

  • Im, Moo-Hyeog;Kwon, Kwang-Il;Park, Kun-Sang;Lee, Kyung-Jin;Chang, Moon-Ik;Yun, Won-Kap;Choi, Woo-Jong;Yoo, Kwang-Soo;Hong, Moo-Ki
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.575-579
    • /
    • 2007
  • This study was performed to acquire scientific data for establishing the maximum residue limits (MRLs) of pesticides in Korean red ginseng and its extract. Pesticides (azoxystrobin, fenhexamid, cyprodinil) were applied to a cultivated field of ginseng, and the fresh ginseng was harvested and processed to make Korean red ginseng and its extract. The reduction rates of the residue pesticides were calculated by determining the pesticide contents in each stage of ginseng processing. The residue levels in fresh ginseng were 0.12 ppm for azoxystrobin, 0.19 ppm for fenhexamid, and 1.78 ppm for cyprodinil. The residue levels in Korean red ginseng were 0.24, 0.54, and 1.49 ppm, and in the extract 0.81, 1.93, and 3.66 ppm for azoxystrobin, fenhexamid, and cyprodinil, respectively. The steaming and processing of fresh ginseng increased azoxystrobin and fenhexamid residues, but cyprodinil was reduced. The reduction rates (dry basis) of azoxystrobin, fenhexamid, and cyprodinil were 0.66, 0.94, and 0.28 for Korean red ginseng, and 3.25, 4.94, and 1.01 for the extract, respectively.

Environment-Friendly Cultural and Mechanical Practices for Weed Management (잡초처리(雜草處理)를 위한 환경친화적(環境親和的) 재배기술(栽培技術))

  • Pyon, J.Y.;Guh, J.D.;Ku, Y.C.
    • Korean Journal of Weed Science
    • /
    • v.17 no.1
    • /
    • pp.124-134
    • /
    • 1997
  • As control of plant diseases, insects and weeds were heavily relied on pesticides, residues of pesticides in environment and food supply were recently focused by environmentalists and consumer groups. The reduction of pesticide use was implemented in Sweden, Denmark, Netherland, England, and United States. Therefore, it is very important to discuss environmentally sound systems of weed management including cultural, mechanical, and integrated weed control. Mechanical methods using tillage, cultivation, mulching, burning, mowing, solarization, and UHF are used as one of most effective environmentally sound weed management systems. Cultural practices favoring the crops are excellent weed management measures. Correct seedbed preparation for the soil and cultural system, and use competitive cultivars contribute to weed management. Increasing crop density by higher seeding rate or by narrowing row width and careful attention to optimum fertility to produce vigorous crop plants increase competitiveness of crops against weeds. Crop rotation breaks life cycles of weeds by alternating the crop it must associate with. Herbicides are efficient and profitable to control weeds, but must be part of a total weed management program with use of minimum rate. The best weed management will be an integrated approach including two or more methods to manage weed problems.

  • PDF

Reduction Effects of Residual Pesticides using the Eco-friendly Soil Amendments in Agricultural Soil (환경친화적 토양개량제의 농경지 중 잔류농약 경감효과)

  • Lee, Hyo Sub;Hong, Su Myeong;Kim, Taek Kyum;Kwon, Hye Young;Kim, Dan Bi;Moon, Byeong Chul;Moon, Joon Kwan
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.4
    • /
    • pp.312-318
    • /
    • 2016
  • This study investigated the reduction of residual pesticide in soil by using eight kinds of soil amendments such as shell, quick lime, dolomite, silicic acid, leaf mold, oil cake, bed soil and husk. A total of ten pesticides most frequently detected in agricultural soil were selected (azoxystrobin etc.) and soil amendments were treated in soils at a 2% application rate and incubated for 7 days. Pesticides were analyzed by HPLC-MS/MS with QuEChERS-based sample preparation procedure and pH was measured on 1, 3 and 7 days. This study showed that, soil amemdments were effective in reducing pesticides after 7days of incubation. Over 90% of azoxystrobin, cadusafos, chlorpyrifos, fluquinconazole, imidacloprid, isoprothiolane and procymidone were decomposed from soils amended with 2% quick lime, whereas the concentration of boscalid, dimethomorph and triycyclazole were not decreased. The soil pH increased to 12.8-12.9 in soil amended with quick lime, but other soil conditioners did not change the soil pH. Quick lime was particularly effective in reducing residual pesticides.

Reduction of Pesticide Residues in Field-Sprayed Leafy Vegetables by Washing and Boiling (엽채류의 세척 및 끓임에 의한 엽면살포 농약의 경감)

  • Kwon, Hye-Young;Lee, Hee-Dong;Kim, Jin-Bae;Jin, Yong-Duk;Moon, Byeong-Chul;Park, Byung-June;Son, Kyung-Ae;Kwon, Oh-Kyung;Hong, Moo-Ki
    • Journal of Food Hygiene and Safety
    • /
    • v.24 no.2
    • /
    • pp.182-187
    • /
    • 2009
  • The reduction rate of pesticide residues on spinach(bifenthrin, metalaxyl, procymidone), chard(bifenthrin, imidacloprid) and mallow(bifenthrin, chlorpyrifos, imidacloprid) were tested on each step of washing and boiling(spinach: 1, 3, 5min., chard: 3, 6, 9min., mallow: 10, 20, 30min.). The reduction rates of bifenthrin and procymidone by washing were $58{\sim}64%$ and 82%, and these were not changed significantly after boiling. In case of imidacloprid, the rates showed 43% on chard and 12% on mallow by washing, and these were highly increased to 94% after boiling. And the reduction rate of metalaxyl and chloropyrifos were 69% and 11% by washing, and $96{\sim}98%$ and $77{\sim}79%$ by boiling. Specifically we monitored the pesticide residues on both boiled vegetable and its water because there are used to cook as soup in Korea. The total residual amounts of imidacloprid and chloropyrifos were effectively removed on both boiled mallow and its water ($12%{\rightarrow}34{\sim}40%$, $11%{\rightarrow}76{\sim}79%$), however, the other tested pesticides were not changed on pesticide residues when calculated with total amounts on boiled vegetable and its water. These explained the other pesticides were just moved vegetable to water by boiling.

Removal of Pesticide Residues in Field-sprayed Leafy Vegetables by Different Washing Method (엽채류에 엽면 살포된 농약의 세척 방법에 따른 제거)

  • Kwon, Hyeyoung;Kim, Taek-Kyum;Hong, Su-Myeong;Kim, Chan-Sub;Baeck, Minkyeong;Kim, Doo-Ho;Son, Kyung-Ae
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.4
    • /
    • pp.237-243
    • /
    • 2013
  • Pesticides were sprayed on perilla leaf and leafy lettuce in a greenhouse and the reduction rate of pesticide residues on each vegetable by washing were tested. The reduction rate of pesticide residues by washing for 30 sec~3 min on perilla leaf were 3~63% in tap water, 2~58% in salt water, 6~74% in green tea water, and 8~86% in detergent solution. The detergent solution only showed significant difference in reduction rates compared to the tab water washing. Considering reduction effects of the washing duration, it was showed that the reduction rates were a pattern of inclining as the duration of washing process increased, but there was no significant difference in the reduction rates except the reduction rates between washing in the detergent solution for 1 min and 3 min. Comparing washing in flowing tab water and in stagnant tab water with leafy lettuce, the reduction rate by one time washing were 8~68% in flowing tab water and 7~64% in stagnant tab water. The water and the time used in this experiment were 17.5 L, 2.9 min with flowing tab water and 4 L, 1 min with stagnant tab water. The reduction rate by 3 times washing in stagnant tab water were 16.5~76.6%, and the water and the time used were 12 L, 3 min. Therefore, when the water and the time used to wash vegetables were considered, washing two or three times in stagnant tab water could be more effective than washing one time in flowing tab water.

Prediction of Ammonia Emission Rate from Field-applied Animal Manure using the Artificial Neural Network (인공신경망을 이용한 시비된 분뇨로부터의 암모니아 방출량 예측)

  • Moon, Young-Sil;Lim, Youngil;Kim, Tae-Wan
    • Korean Chemical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.133-142
    • /
    • 2007
  • As the environmental pollution caused by excessive uses of chemical fertilizers and pesticides is aggravated, organic farming using pasture and livestock manure is gaining an increased necessity. The application rate of the organic farming materials to the field is determined as a function of crops and soil types, weather and cultivation surroundings. When livestock manure is used for organic farming materials, the volatilization of ammonia from field-spread animal manure is a major source of atmospheric pollution and leads to a significant reduction in the fertilizer value of the manure. Therefore, an ammonia emission model should be presented to reduce the ammonia emission and to know appropriate application rate of manure. In this study, the ammonia emission rate from field-applied pig manure is predicted using an artificial neural network (ANN) method, where the Michaelis-Menten equation is employed for the ammonia emission rate model. Two model parameters (total loss of ammonia emission rate and time to reach the half of the total emission rate) of the model are predicted using a feedforward-backpropagation ANN on the basis of the ALFAM (Ammonia Loss from Field-applied Animal Manure) database in Europe. The relative importance among 15 input variables influencing ammonia loss is identified using the weight partitioning method. As a result, the ammonia emission is influenced mush by the weather and the manure state.

Comparison of the Sensitivity of Freshwater Algae to 6 Pesticides for Paddy Rice (담수조류의 벼재배용 농약 6종에 대한 감수성 비교)

  • Bae, Chul-Han;Park, Yeon-Ki;Kim, Yeon-Sik;Cho, Kyung-Won;Lee, Suk-Hee;Jung, Chang-Kook
    • The Korean Journal of Pesticide Science
    • /
    • v.12 no.3
    • /
    • pp.222-228
    • /
    • 2008
  • Algal Growth-inhibition tests were conducted with 6 pesticides butachlor GR (5%), butachlor EW (33%), isoprothiolane GR (12%), isoprothiolane EC (40%), diazinon GR (3%) and diazinon EC (34%) to determine their comparative toxicity to three species of freshwater green algae Selenastrum capricornutum, Scenedesmus subspicatus, Chlorella vulgris and one species diatom Nitzschia palea. The test species were exposed to the test pesticide for 72 hours and the toxicity represented $EC_{50}$ value calculated by the reduction in growth rate at 72 hours. The toxicity of EC or EW formulation to green algae and diatom was higher than the toxicity of GR formulation at all test in this study. Also, the toxicity of EC formulation was higher than the toxicity technical pesticide. These results indicate that the types of pesticide formulation may affect on their toxicity on algae and the green alga, S. capricornutum and S. subspicatus were more sensitive than C. vulgris. Also, the sensitivity of the diatom, N. palea showed equal or lower than S. capricornutum, S. subspicatus but more sensitive than C. vulgris.

Analysis of Soil Erosion Reduction Ratio with Changes in Soil Reconditioning Amount for Highland Agricultural Crops (고랭지 농업의 작물별 객토량 변화에 따른 토양유실 저감 분석)

  • Heo, Sunggu;Jun, ManSig;Park, Sanghun;Kim, Ki-sung;Kang, SungKeun;Ok, YongSik;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.2
    • /
    • pp.185-194
    • /
    • 2008
  • There is increased soil erosion potential at highland agricultural crop fields because of its topographic characteristics and site-specific agricultural management practices performed at these areas. The agricultural upland fields are usually located at the sloping areas, resulting in higher soil loss, pesticides, and nutrients in case of torrential rainfall events or typhoon, such as 2002 Rusa and 2003 MaeMi. At the highland agricultural fields, the soil reconditioning have been performed every year to decrease damage by continuous cropping and pests. Also it has been done to increase crop productivity and soil fertility. The increased amounts of soil used for soil reconditioning are increasing over the years, causing significant impacts on water quality at the receiving water bodies. In this study, the field investigation was done to check soil reconditioning status for potato, carrot, and cabbage at the Doam-dam watershed. With these data obtained from the field investigation, the Soil and Water Assesment Tool (SWAT) model was used to simulate the soil loss reduction with environment-friendly and agronomically enough soil reconditioning. The average soil reconditioning depth for potato was 34.3 cm, 48.3 cm for carrot, and 31.2 cm for cabbage at the Doam-dam watershed. These data were used for SWAT model runs. Before the SWAT simulation, the SWAT ArcView GIS Patch, developed by the Kangwon National University, was applied because of proper simulation of soil erosion and sediment yield at the sloping watershed, such as the Doam-dam watershed. With this patch applied, the Coefficient of Determination ($R^2$) value was 0.85 and the Nash-Sutcliffe Model Efficiency (EI) was 0.75 for flow calibration. The $R^2$ value was 0.87 and the EI was 0.85 for flow validation. For sediment simulation, the $R^2$ value was 0.91 and the EI was 0.70, indicating the SWAT model predicts the soil erosion processes and sediment yield at the Doam-dam watershed. With the calibrated and validated SWAT for the Doam-dam watershed, the soil erosion reduction was investigated for potato, carrot, and cabbage. For potato, around 19.3 cm of soil were over applied to the agricultural field, causing 146% of more soil erosion rate, approximately 33.3 cm, causing 146% of more soil erosion for carrot, and approximately 16.2 cm, causing 44% of more soil erosion. The results obtained in this study showed that excessive soil reconditioning are performed at the highland agricultural fields, causing severe muddy water issues and water quality degradation at the Doam-water watershed. The results can be used to develop soil reconditioning standard policy for various crops at the highland agricultural fields, without causing problems agronomically and environmentally.

Residue of Pesticides Carbendazim and Chlorpyrifos in Different Parts of Red Pepper (고추의 부위별 카벤다짐과 클로르피리포스의 잔류 양상)

  • Park, Hae-In;Hwang, Jae-Moon;Kim, Byung-Soo;Lee, Mi-Gyeong;Chol, Young-Wook;Lee, Min-Ho;Jeong, Jeong-Eun;Kim, Jeong-Han
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.3
    • /
    • pp.246-253
    • /
    • 2011
  • This experiment was carried out to examine the residual amount variation of carbendazim and chlorpyrifos in fruit parts of red pepper according to the open field and/or the rain shelter house. It was shown higher residual amounts of agrochemicals in the field than the house condition at two hours (0 day) after chemical application, but it was shown higher residual amounts in the house at 5 days and 10 days. Although the residual amount in the field was higher than in the house at the beginning, the chemicals fast degraded in field condition. Carbendazim and chlorpyrifos remained as time passed in order of receptacle, but the residual amounts of two chemicals in leaf at $5^{th}$ day. Carbendazim and chlorpyrifos were lessened until 10 days after chemical application, and reduction rate were 19.1% and 66.4% in flesh, 45.2% and 62.3% in receptacle, and 41.6% and 72.0% in the stalk, respectively. The reduction rate at 15 days showed 31.1%, 75.3% in flesh, 43.5%, 81.7% in receptacle, and 47.7%, 82.8% in stalk, respectively. Therefore the reduction rate of carbendazim showed receptacle > stalk > flesh, and that of chlorpyrifos showed stalk > receptacle > flesh in order. The calculated half-life of carbendazim showed 29.6 days in flesh, 13.6 days in receptacle, and 16.0 days in stalk, but that of chlorpyrifos showed 8.3 days in flesh, 8.3 days in receptacle, and 6.3 days in stalk. In conclusion, the half-life of carbendazim was longer than that of chlorpyrifos in even part, and especially was longest in flesh part of fruit.