• Title/Summary/Keyword: reduction of switching loss

Search Result 120, Processing Time 0.036 seconds

A Gate Drive Circuit for Low Switching Losses and Snubber Energy Recovery

  • Shimizu, Toshihisa;Wada, Keiji
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.259-266
    • /
    • 2009
  • In order to increase the power density of power converters, reduction of the switching losses at high-frequency switching conditions is one of the most important issues. This paper presents a new gate drive circuit that enables the reduction of switching losses in both the Power MOSFET and the IGBT. A distinctive feature of this method is that both the turn-on loss and the turn-off loss are decreased simultaneously without using a conventional ZVS circuit, such as the quasi-resonant adjunctive circuit. Experimental results of the switching loss of both the Power MOSFET and the IGBT are shown. In addition, an energy recovery circuit suitable for use in IGBTs that can be realized by modifying the proposed gate drive circuit is also proposed. The effectiveness of both the proposed circuits was confirmed experimentally by the buck-chopper circuit.

Loss Reduction in Heavy Loaded Distribution Networks Using Cyclic Sub Tree Search (순환적 부분트리 탐색법을 이용한 중부하 배전계통의 손실최소화)

  • Choi, Sang-Yule;Shin, Myong-Chul
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.5
    • /
    • pp.241-247
    • /
    • 2001
  • Network reconfiguration in distribution systems is realized by changing the status of sectionalizing switches, and is usually done for loss reduction of load balancing in the system. This paper presents an effective heuristic based switching scheme to solve the distribution feeder loss reduction problem. The proposed algorithm consists of two parts. One is to set up a decision tree to represent the various switching operations available. Another is to apply a proposed technique called cyclic best first search. the proposed algorithm identify the most effective the set of switch status configuration of distribution system for loss reduction. To demonstrate the validity of the proposed algorithm, numerical calculations are carried out the 32, 69 bus system models.

  • PDF

Comparison Study of EMI and Switching Loss Reductions of Unipolar and Improved Limited Unipolar Switching Circuits

  • Fujimoto, Takashi;Park, Kyihwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.152.2-152
    • /
    • 2001
  • This paper investigates the effect of the conducted EMI Electromagnetic Interference and the switching loss which occurs from the switching devices in the switching period of the unipolar and limited unipolar switching circuits. The three main sources of conducted EMI and switching loss in the unipolar and limited unipolar switching circuit come from the switching devices, the number of switching times in the switching period and their switching waveform. In this paper, these three parameters are used to determine the conducted EMI which generated from the unipolar and limited unipolar switching circuits and to improve the limited unipolar switching circuit which uses the power MOSFET´s as the switching devices. The significant reduction of Ire conducted EMI ...

  • PDF

A Study on Switching Characteristics of Active Clamp Type Flyback Converter with Synchronous Rectifier Driving Signals Controlling Auxiliary Switch (보조스위치가 동기정류기 구동 신호로 제어되는 능동 클램프형 플라이백 컨버터의 스위칭 특성에 관한 연구)

  • Ahn, Tae Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.3
    • /
    • pp.21-26
    • /
    • 2018
  • In this paper, the switching characteristics of the active clamp type flyback converter, which is deemed suitable for the miniaturization of the external power supply for home appliance, were analyzed and the process of reducing the switching loss was explained. The active clamp type flyback converter operating in the DCM has confirmed that the surge voltage of the main switch does not occur and the turn-off / on loss of the switch do not occur in principle. Also, in the case of the switch for synchronous rectifier, it was showed that the switch current showed half-wave rectified sinusoidal characteristic, and the switching loss was reduced. The switching characteristics of the experimental results gathered from 120 W class prototype were compared with the theoretical waveform in the steady-state and it was confirmed that the power conversion efficiency of the active clamp type flyback converter was maintained high due to the reduction of the switching loss.

Turn-on Loss Reduction for High Voltage Power Stack Using Active Gate Driving Method

  • Kim, Jin-Hong;Park, Joon Sung;Gu, Bon-Gwan;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.632-642
    • /
    • 2017
  • This paper presents an improved approach towards reducing the switching loss of insulated gate bipolar transistors (IGBTs) for a medium-capacity-class power conditioning system (PCS). In order to improve the switching performance, the switching operation is analyzed, and based on this analysis, an improved switching method that reduces the switching time and switching loss is proposed. Compared to a conventional gate drive scheme, the switching loss, switching time, and delay are improved in the proposed gate driving method. The performance of the proposed gate driving method is verified through several experiments.

A Soft switching method for Loss reduction of Inverter (인버터의 손실저감을 위한 소프트 스위칭기법)

  • 곽동걸;김영철;이현우
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.249-252
    • /
    • 2001
  • A large number of soft switching topologies included a resonant circuit have been proposed. But these circuits increase number of switch in circuit and complicate sequence of switching operation. In this Paper, the authors propose power conversion system, DC-AC inverter of high efficiency and high power factor with soft switching mode by partial resonant method. The result is that the switching loss is very low and the efficiency of system is high. And the snubber condenser used in partial resonant circuit makes charging energy regenerated at input power source for resonant operation.

  • PDF

CoolSiCTM SiC MOSFET Technology, Device and Application

  • Ma, Kwokwai
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.577-595
    • /
    • 2017
  • ${\bullet}$ Silicon Carbide (SiC) had excellent material properties as the base material for next generation of power semiconductor. In developing SiC MOSFET, gate oxide reliability issues had to be first overcome before commercial application. Besides, a high and stable gate-source voltage threshold $V_{GS(th)}$ is also an important parameter for operation robustness. SiC MOSFET with such characteristics can directly use existing high-speed IGBT gate driver IC's. ${\bullet}$ The linear voltage drop characteristics of SiC MOSFET will bring lower conduction loss averaged over full AC cycle compared to similarly rate IGBT. Lower switching loss enable higher switching frequency. Using package with auxiliary source terminal for gate driving will further reduce switching losses. Dynamic characteristics can fully controlled by simple gate resistors. ${\bullet}$ The low switching losses characteristics of SiC MOSFET can substantially reduce power losses in high switching frequency operation. Significant power loss reduction is also possible even at low switching frequency and low switching speed. in T-type 3-level topology, SiC MOSFET solution enable three times higher switching freqeuncy at same efficiency.

  • PDF

Soft-Switching Half-Bridge Converter using Secondary Switches for Output Control and Conduction Loss Reduction (출력제어와 도통손실 감소를 위해 2차측 스위치를 사용한 소프트스위칭 하프브리지 컨버터)

  • 김영필;김진우;김태웅;이성백
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.103-106
    • /
    • 2001
  • In this paper, a soft switching half-bridge converter using secondary switches for output control and conduction loss reduction is proposed. The conventional half-bridge converter must be fixed on duty cycle for soft switching. The proposed converter was consisted of two added switches in series of the secondary rectifier diodes. The main switches with constant duty cycle are operated ZVS. The secondary switches are operated ZV-ZCS. Especially, the primary switches were fixed duty cycle for maximum voltage conversion ratio. Output of converter is controlled by duty cycle or phase-shifted time of secondary switches. The conduction loss of the proposed converter can be reduced by the secondary switches. The operation characteristic, analysis, simulation and experimental results of the proposed converter are presented.

  • PDF

Loss Minimization for Distribution Network using Partial Tree Search (부분 tree 탐색을 이용한 배전계통의 손실 최소화)

  • Choi, S.Y.;Shin, M.C.;Nam, G.Y.;Cho, P.H.;Park, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.519-521
    • /
    • 2000
  • Network reconfiguration is an operation task, and consists in the determination of the switching operations such to reach the minimum loss conditions of the distribution network. In this paper, an effective heuristic based switch scheme for loss minimization is given for the optimization of distribution loss reduction and a solution approach is presented. The solution algorithm for loss minimization has been developed based on the two stage solution methodology. The first stage of this solution algorithm sets up a decision tree which represent the various switching operations available, the second stage applies a proposed technique called cyclic best first search. Therefore, the solution algorithm of proposed method can determine on-off switch statuses for loss reduction, with a minimum computational effort.

  • PDF

The Study on Miniaturization and Weight Reduction of Auxiliary Power Unit in Magnetic Levitation Train

  • Lee, Na Ri;Shin, Hee Keun;Choi, Sung Ho;Kim, Ju Bum;Lim, Jae Won;Park, Doh Young;Mok, Hyung Soo
    • International Journal of Railway
    • /
    • v.8 no.1
    • /
    • pp.10-14
    • /
    • 2015
  • Due to the characteristics of the vehicle structure, the magnetic levitation train has a confined bottom space thus a study on miniaturization and weight reduction of auxiliary power unit is essential. This auxiliary power unit is an essential device used for illumination, air conditioning, heating and air brake equipment excluding the motor. The previous auxiliary power unit for magnetic levitation train has used the hard switching having a high switching frequency with heavy loss in order to reduce the size of filter reactor and transformer but the reduction in volume was not significant. In this paper, by reducing the loss, reducing the size of the cooling unit and by increasing the switching frequency using the soft switching of resonant converter, it has miniaturized and reduced the weight of filter reactor and transformer which occupy significant space in the auxiliary power unit. This study has verified the performance of 50KVA grade prototype through simulated interpretation and analysis, and compared the size and weight of auxiliary power unit of the previous magnetic levitation train.