• Title/Summary/Keyword: reduction load

검색결과 2,365건 처리시간 0.029초

A Study on Exhaust Gas Characteristics of Heavy-duty Diesel Engines through Actual Vehicle Application of Non-influenced Temperature Condition Type Active Regeneration Method (온도조건 비영향형 복합재생방식 DPF의 실차적용을 통한 대형디젤기관의 배출가스 특성 연구)

  • Yun chul Lee;Sang ki Oh
    • Journal of ILASS-Korea
    • /
    • 제29권2호
    • /
    • pp.53-59
    • /
    • 2024
  • Cars are one of the main causes of air pollution in large cities, and 34.6% of domestic air pollution emissions come from mobile sources, of which cars account for 69.6%. In particular, the importance of nitrogen oxides (NOx) and particulate matter (PM), which are major pollutants in diesel vehicles, is increasing due to their high contribution to emissions. Therefore, in this study, the problem of natural regeneration caused by low exhaust gas temperature during low speed and low load operation was solved by applying a complex regeneration DPF that is not affected by temperature conditions to large diesel vehicles with higher driving time and engine displacement than small and medium-sized vehicles. And the feasibility of application to large diesel vehicles was reviewed by measuring the emission reduction efficiency. As a result of the reduction efficiency test on the actual vehicle durability product, PM showed a reduction efficiency of 84% to 86%, and the reduction efficiency of gaseous substances showed a high reduction efficiency of over 90%. The actual vehicle applicability test was completed with three driving patterns: village bus vehicle, police car, and road-going construction equipment vehicle, and no device problems occurred until the end of the test. Both load and no-load smoke measurement results showed a smoke reduction efficiency of over 96%.

A Study on the Evaluation of the Loads Acting on the Pillar in Two-Arch Tunnel (2-Arch 터널 중앙벽체 작용하중 산정에 관한 연구)

  • Oh, Gyoo-Chul;Chun, Byung-Sik;Do, Jong-Nam
    • Journal of the Korean Geotechnical Society
    • /
    • 제23권11호
    • /
    • pp.5-14
    • /
    • 2007
  • In this study, Matsuda formula used to evaluate the loads acting on the pillar was investigated and load reduction factor(${\alpha}$) was evaluated by numerical analysis to better apply for the design. From the results, normal stress was concentrated to one side due to excavation of preceding tunnel after construction of pillar. And 86.5% of maximum normal stress was revealed partly unequally when the ground was poor. By numerical analysis, $14{\sim}83%$ of total loads calculated by Matsuda formula decreased and then, from these results, load reduction factor(${\alpha}$) was estimated. From now on, stability and economic aspects could be guaranteed by applying the load reduction factor(${\alpha}$).

Reduction Efficiency Analysis of Furrow Vegetation and PAM (Polyacrylamide) Mulching for Non-Point Source Pollution Load from Sloped Upland During Farming Season (경사밭 고랑 식생 및 PAM (Polyacrylamide) 멀칭에 따른 영농기 비점오염 저감효과 분석)

  • Yeob, So-Jin;Kim, Min-Kyeong;An, Nan-Hee;Choi, Soon-Kun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • 제65권4호
    • /
    • pp.1-10
    • /
    • 2023
  • As a result of climate change, non-point source pollution (NPS) from farmland with the steep slope during the rainy season is expected to have a significant impact on the water system. This study aimed to evaluate the effect of furrow mulching using alfalfa and PAM (Polyacrylamide) materials for each rainfall event, while considering the load characteristics of NPS. The study was conducted in Wanju-gun, Jeollabuk-do, in 2022, with a testbed that had a slope of 13%, sandy loam soil, and maize crops. The testbed was composed of four plots: bare soil (Bare), No mulching (Cont.), Vegetation mulching (VM), and PAM mulching (PM). Runoff was collected from each rainfall event using a 1/40 sampler and the NPS load was calculated by measuring the concentrations of SS, T-N, T-P, and TOC. During farming season, the reduction efficiency of NPS load was 37.1~59.5% for VM and 38.2~75.7% for PM. The analysis found that VM had a linear regression correlation (R2=0.28~0.86, P-value=0.01~0.1) with elapsed time of application, while PM had a quadratic regression correlation (R2=0.35~0.80, P-value=0.1). These results suggest that the selection of furrow mulch materials and the appropriate application method play a crucial role in reducing non-point pollution in farmland. Therefore, further studies on the time-series reduction effect based on the application method are recommended to develop more effective preemptive reduction technologies.

The Effect of Load Conditions for the Power of Mg-Air Fuel Cell (부하조건이 마그네슘-공기연료전지의 출력특성에 미치는 영향)

  • Kim, Yong-Hyuk
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • 제61권3호
    • /
    • pp.134-139
    • /
    • 2012
  • The power characteristics of the Mg-Air fuel cell were investigated with regard to variation of load conditions. The types of load current using for the Mg-Air fuel cell with 10% NaCl electrolyte were step type, ramp type and pulse type. It was found that transient phenomena occurred in the step current load, which is due to activate of the oxidation-reduction reaction process. And the transient time increase with the load current increase. In the load current of ramp type, the slop of voltage drop increased with current load slop ${\alpha}$ increase. The load voltage and power decreased according to the pulse period of load current decrease were attributed to the metal sludges.

A Study on Load Control Method for Home Energy Management System (H-EMS) Considering the Human Comfort (주거자 만족도를 고려한 주택 에너지관리 시스템의 부하제어 방법 연구)

  • Jeon, Jeong-Pyo;Kim, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제63권8호
    • /
    • pp.1025-1032
    • /
    • 2014
  • The effective energy management method will provide the significant advantage to the residential customers under real time pricing plan since it can reduce the electricity charge by controlling the energy consumption according to electricity rate. The earlier studies for load management mainly aim to minimize the electricity charges and peak power but put a less emphasis on the human comfort dwelling in the residence. The discomfort and displeasure from the energy management only focusing on reduction of electricity charge will make the residential customer reluctant to enroll the real time pricing plan. In this paper, therefore, we propose optimal load control strategy which aim to achieve not only minimizing the electricity charges but also maintaining human comfort by introducing "the human comfort coefficient." Using the human comfort coefficient, the energy management system can reflect the various human personality and control the loads within the range that the human comfort is maintained. Simulation results show that proposed load control strategy leads to significant reduction in the electricity charges and peak power in comparison with the conventional load management method.

A Study on the Simplified Presumption Method for the Prediction of Cooling and Heating Performance in a Fresh Air Load Reduction System by Using Geothermal Energy (지열을 이용한 외기부하저감시스템의 냉각 및 가열효과 예측을 위한 간이추정법에 관한 연구)

  • Son, Won-Tug;Park, Kyung-Soon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제22권9호
    • /
    • pp.628-634
    • /
    • 2010
  • This paper presents a feasibility study of a fresh air load reduction system by using an underground double floor space. The fresh air is introduced into the double slab space and passes through the opening bored into the footing beam. The air is cooled by the heat exchange with the inside surface of the double slab space in summer, and heated in winter. This system not only reduces sensible heat load of the fresh air by heat exchange with earth but also reduces latent heat load of the fresh air by ad/de-sorption of underground double slab concrete. In this paper, we proposed a simplified presumption method for the prediction of cooling and heating performance in the system. In conclusion the proposed method has been verified by comparing with the calculated value of the numerical analysis model by using nonlinear two-dimension hygroscopic question.

A novel preloading method for foundation underpinning for the remodeling of an existing building

  • Wang, Chengcan;Han, Jin-Tae;Kim, Seokjung;Jang, Young-Eun
    • Geomechanics and Engineering
    • /
    • 제24권1호
    • /
    • pp.29-42
    • /
    • 2021
  • The utilization of buildings can be improved by extending them vertically. However, the added load of the extension might require building foundations to be underpinned; otherwise, the loads on the foundations might exceed their bearing capacity. In this study, a preloading method was presented aiming at transferring partial loads from existing piles to underpinning piles. A pneumatic-type model preloading device was developed and used to carry out centrifuge experiments to evaluate the load-displacement behavior of piles, the pile-soil interaction during preloading, and the additional loading caused by vertical extension. The results showed that the preloading devices effectively transfer load from existing piles to underpinning piles. In the additional loading test of group piles, the load-sharing ratio of a pile increased with its stiffness. The load-sharing ratio of a preloaded micropile was less than that of a non-preloaded micropile as a result of the reduction in axial stiffness caused by preloading before additional loading. Therefore, a slight reduction of the load-sharing capacity of an underpinning pile should be considered if the preloading method is applied. Further, two full scale preloading devices was developed. The devices preload underpinning piles and thereby produce reaction forces on a reaction frame to jack existing piles upward, thus transferring load from the existing piles to the underpinning piles. Specifically, screw-type and hydraulic-jack type devices were developed for the practical application of foundation underpinning during vertical extension, and their operability and load transfer effect verified via full-scale structural experiments.

Equivalent static wind loads analysis of tall television towers considering terrain factors of hilltops based on force measurement experiment

  • Ke, Shitang;Wang, Hao;Ge, Yaojun;Zhao, Lin;Cao, Shuyang
    • Structural Engineering and Mechanics
    • /
    • 제63권4호
    • /
    • pp.509-519
    • /
    • 2017
  • Wind field in mountainous regions demonstrates unique distribution characteristic as compared with the wind field of the flat area, wind load and wind effect are the key considerations in structural design of television towers situated in mountainous regions. The television tower to be constructed is located at the top of Xiushan Mountain in Nanjing, China. In order to investigate the impact of terrain factors of hilltops on wind loads, firstly a wind tunnel test was performed for the mountainous area within 800m from the television tower. Then the tower basal forces such as bending moments and shear strength were obtained based on high frequency force balance (HFFB) test. Based on the experiments, the improved method for determining the load combinations was applied to extract the response distribution patterns of foundation internal force and peak acceleration of the tower top, then the equivalent static wind loads were computed under different wind angles, load conditions and equivalent goals. The impact of terrain factors, damping ratio and equivalent goals on the wind load distribution of a television tower was discussed. Finally the equivalent static wind loads of the television tower under the 5 most adverse wind angles and 5 most adverse load conditions were computed. The experimental method, computations and research findings provide important references for the anti-wind design of high-rise structure built on hilltops.

Evaluation of Train Running Safety for Direct Fixation Concrete Track on Light Rapid Transit (경전철 직결식 콘크리트 궤도구조의 열차주행안전성 평가)

  • Choi, Jung-Youl;Kim, Jun-Hyung;Chung, Jee-Seung;Lee, Sun-Gil
    • Journal of the Korean Society of Safety
    • /
    • 제32권5호
    • /
    • pp.41-46
    • /
    • 2017
  • The coefficient of derailment and the rate of wheel load reduction were used as the index of train running safety that was directly affected the train derailment safety. In aspects of track, the train running safety depends on the complex interaction between wheel and rail, and the track-vehicle conditions (i.e., the curvature, cant, track system, vehicle speed and the operation conditions, etc). In this study, the relationship between the train running safety and the track curvature and vehicle speed for direct fixation concrete tracks currently employed in Korean light rapid transit was assessed by performing field tests using actual vehicles running along the service lines. The measured dynamic wheel load, lateral wheel load and lateral displacement of rail head were measured for same train running on four tested tracks under real conditions, which included curved and tangent tracks placed on the tunnel and bridge, thus increasing the train speed by approximately maximum design speed of each test site. Therefore, the measured dynamic track response was applied to the running safety analysis in order to evaluate the coefficient of derailment, the rate of wheel load reduction and the track gauge widening at each test site, and compare with the corresponding Korean train running safety standard. As the results, the lateral track response of direct fixation concrete track appeared to increase with the decreased track curvature; therefore, it was inferred that the track curvature directly affected the train running safety.

Experimental Study on DeNOx Characteristics of Urea-SCR System (Urea-SCR 시스템의 DeNOx 특성에 관한 실험적 연구)

  • Ham, Yun-Young;Lee, Seong-Ho;Jung, Hong-Seok;Shin, Dong-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제17권2호
    • /
    • pp.180-186
    • /
    • 2009
  • To meet the NOx limit without a penalty of fuel consumption, urea SCR system is currently regarded as promising NOx reduction technology for diesel engines. SCR system has to achieve maximal NOx conversion in combination with minimal $NH_3$ slip. In this study, as a basic research to develop an algorithm for urea injection control, the characteristics of engine out NOx emission and behavior of NOx reduction during steady-state and transient conditions were investigated using 2L DI diesel engine. Test results show that on increasing the catalyst temperature the variations in the outlet NOx concentration are faster and maximal allowable $NH_3$ storage exponentially decreases. For change from a low to high engine load, it can be seen that a few seconds after load-step is required to reach full NOx conversion and the adsorbed amount of $NH_3$ at lower temperature desorb during the next temperature increase, causing $NH_3$ slip. Engine out NOx emission needs to be corrected because NOx emissions just after step load is lower than that of steay state condition.