• Title/Summary/Keyword: reduction atmosphere

Search Result 537, Processing Time 0.031 seconds

Derivation of Green Infrastructure Planning Factors for Reducing Particulate Matter - Using Text Mining - (미세먼지 저감을 위한 그린인프라 계획요소 도출 - 텍스트 마이닝을 활용하여 -)

  • Seok, Youngsun;Song, Kihwan;Han, Hyojoo;Lee, Junga
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.5
    • /
    • pp.79-96
    • /
    • 2021
  • Green infrastructure planning represents landscape planning measures to reduce particulate matter. This study aimed to derive factors that may be used in planning green infrastructure for particulate matter reduction using text mining techniques. A range of analyses were carried out by focusing on keywords such as 'particulate matter reduction plan' and 'green infrastructure planning elements'. The analyses included Term Frequency-Inverse Document Frequency (TF-IDF) analysis, centrality analysis, related word analysis, and topic modeling analysis. These analyses were carried out via text mining by collecting information on previous related research, policy reports, and laws. Initially, TF-IDF analysis results were used to classify major keywords relating to particulate matter and green infrastructure into three groups: (1) environmental issues (e.g., particulate matter, environment, carbon, and atmosphere), target spaces (e.g., urban, park, and local green space), and application methods (e.g., analysis, planning, evaluation, development, ecological aspect, policy management, technology, and resilience). Second, the centrality analysis results were found to be similar to those of TF-IDF; it was confirmed that the central connectors to the major keywords were 'Green New Deal' and 'Vacant land'. The results from the analysis of related words verified that planning green infrastructure for particulate matter reduction required planning forests and ventilation corridors. Additionally, moisture must be considered for microclimate control. It was also confirmed that utilizing vacant space, establishing mixed forests, introducing particulate matter reduction technology, and understanding the system may be important for the effective planning of green infrastructure. Topic analysis was used to classify the planning elements of green infrastructure based on ecological, technological, and social functions. The planning elements of ecological function were classified into morphological (e.g., urban forest, green space, wall greening) and functional aspects (e.g., climate control, carbon storage and absorption, provision of habitats, and biodiversity for wildlife). The planning elements of technical function were classified into various themes, including the disaster prevention functions of green infrastructure, buffer effects, stormwater management, water purification, and energy reduction. The planning elements of the social function were classified into themes such as community function, improving the health of users, and scenery improvement. These results suggest that green infrastructure planning for particulate matter reduction requires approaches related to key concepts, such as resilience and sustainability. In particular, there is a need to apply green infrastructure planning elements in order to reduce exposure to particulate matter.

Study on Vacuum Pump Capacity with Leakage of Tube Structure (튜브구조물의 누설을 포함한 진공 펌프 용량에 관한 연구)

  • Nam, Seong-Won
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1157-1161
    • /
    • 2011
  • Parametric study has been conducted to calculate the capacity of vacuum pump system that will be used to maintain the pressure of the tube system under atmosphere level. Recently many railroad researchers pay attention to the tube train system as one of the super high speed transportation system. To achieve the ultra super high speed, the inside of tube system should be maintained the low pressure level. In the low pressure environment, it is well known that air resistance of train is drastically decreased. Vacuum pump system will be used to make the low pressure level of tube system, exhaust the leakage air and supplement additional vacuum pumping. Qualitative and quantitative study has been conducted to review the effects of major parameters concerned with the capacity of vacuum pump system. As a results of these studies, we get the lump capacity of vacuum pump for various parameters. These results can be used to analyse the effects of the reduction of air resistance.

  • PDF

Synthesis of the Fe2O3-CoO-Cr2O3-MnO2 pigments by co-precipitation method (공침법에 의한 Fe2O3-CoO-Cr2O3-MnO2계 안료 연구)

  • Choi, Soo-Nyong;Lee, Byung-Ha
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.6
    • /
    • pp.264-271
    • /
    • 2007
  • The inorganic pigments of $Fe_2O_3-CoO-Cr_2O_3-MnO_2$ were synthesized by the co-precipitation method. $FeCl_3,\;CoCl_2,\;CrCl_3\;and\;MnCl_2$ are used for the starting raw materials, and 2 N-KOH for precipitator. $MnCl_2$ is secured with 10 mole%, and 6 composition ratios are used with three ingredients to synthesize the pigments. The samples were calcined at $1350^{\circ}C/1.5h$. The resulting pigments were characterized by using XRD, FT-IR, SEM, and UV spectrophotometer. 6wt% pigments were applied to lime glaze and lime-barium glaze respectively firing at $1260^{\circ}C$ for oxidation atmosphere and $1240^{\circ}C$ for reduction one. The results of color analysis by using UV spectrophotometer showed black, bluish black and dark grayish green.

A study of improving filtration efficiency through SiC whisker synthesis on carbon felt by CVD VS method

  • Kim, Gwang-Ju;Choe, Du-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.150-150
    • /
    • 2016
  • Mankind is enjoying a great convenience of their life by the rapid growth of secondary industry since the Industrial Revolution and it is possible due to the invention of huge power such as engine. The automobile which plays the important role of industrial development and human movement is powered by the Engine Module, and especially Diesel engine is widely used because of mechanical durability and energy efficiency. The main work mechanism of the Diesel engine is composed of inhalation of the organic material (coal, oil, etc.), combustion, explosion and exhaust Cycle process then the carbon compound emissions during the last exhaust process are essential which is known as the major causes of air pollution issues in recent years. In particular, COx, called carbon oxide compound which is composed of a very small size of the particles from several ten to hundred nano meter and they exist as a suspension in the atmosphere. These Diesel particles can be accumulated at the respiratory organs and cause many serious diseases. In order to compensate for the weak point of such a Diesel Engine, the DPF(Diesel Particulate Filter) post-cleaning equipment has been used and it mainly consists of ceramic materials(SiC, Cordierite etc) because of the necessity for the engine system durability on the exposure of high temperature, high pressure and chemical harsh environmental. Ceramic Material filter, but it remains a lot of problems yet, such as limitations of collecting very small particles below micro size, high cost due to difficulties of manufacturing process and low fuel consumption efficiency due to back pressure increase by the small pore structure. This study is to test the possibility of new structure by direct infiltration of SiC Whisker on Carbon felt as the next generation filter and this new filter is expected to improve the above various problems of the Ceramic DPF currently in use and reduction of the cost simultaneously. In this experiment, non-catalytic VS CVD (Vapor-Solid Chemical Vaporized Deposition) system was adopted to keep high mechanical properties of SiC and MTS (Methyl-Trichloro-Silane) gas used as source and H2 gas used as dilute gas. From this, the suitable whisker growth for high performance filter was observed depending on each deposition conditions change (input gas ratio, temperature, mass flow rate etc.).

  • PDF

Mechanical Deterioration of Overhead Transmission Lines by Forest Fires (산불에 의한 가공 송전선로의 기계적 열화 특성)

  • 김영달;김성덕;심재명;정동화;강지원
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.6
    • /
    • pp.26-34
    • /
    • 2000
  • The considerations for remaining life of ACSR (Aluminum Stranded Conductors Steel Reinforced) in transmission lines have become gradually important to hold reliability and stability of power supply. The remaining life of ACSR exposed to the atmosphere for a long period may rely on deterioration caused by environmental indices such as atmospheric corrosion, galvanic corrosion, crevice corrosion and fatigue corrosion. One of reduction of useful life in overhead transmission lines built on the ridge of mountain is often caused by forest fires.This paper deals with investigation of strength deterioration performance of ASCR due to fires through several testing and analyzing data for tension load and extension of blazed ACSR. Test samples are ACSR 480[$\textrm{mm}^2$] conductors, which are artificially fired to regular durations. Mechanical properties such as tension load and extension for fired ACSR conductors are tested and estimation functions for mechanical performances corresponding to fire duration are determined. As a result, it can be verified that both tension load and extension of ACSR are reduced by increasing fire duration. Hence, it is obvious that ACSR due to forest fires may lead to mechanical deterioration.

  • PDF

Effect of Mixed Treatment of Urea Fertilizer and Zeolite on Nitrous Oxide and Ammonia Emission in Upland Soil

  • Park, Jun-Hong;Park, Sang-Jo;Seo, Young-Jin;Kwon, Oh-Heun;Choi, Seong-Yong;Park, So-Deuk;Kim, Jang-Eok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.5
    • /
    • pp.368-373
    • /
    • 2014
  • Ammonia loss from urea significantly hinders efficient use of urea in agriculture. The level of nitrous oxide ($N_2O$) a long-lived greenhouse gas in atmosphere has increased mainly due to anthropogenic source, especially application of nitrogen fertilizers. There are reports in the literature showing that the addition of zeolite to N sources can improve the nitrogen use efficiency. This study was conducted to evaluate nitrous oxide ($N_2O$) and ammonia ($NH_3$) emission by mixed treatment of urea and zeolite in upland crop field. Urea fertilizer and zeolite were applied at different rates to study their effect on $N_2O$ emission during red pepper cultivation in upland soils. The $N_2O$ gas was collected by static closed chamber method and measured by gas chromatography. Ammonia concentration was analyzed by closed-dynamic air flow system method. The total $N_2O$ flux increased in proportion to the level of N application. Emission of $N_2O$ from the field increased from the plots applied with urea-zeolite mixture compared to urea alone. But urea-zeolite mixture treatment reduced about 30% of $NH_3$-N volatilization amounts. These results showed that the application of urea and zeolite mixture had a positive influence on reduction of $NH_3$ volatilization, but led to the increase in $N_2O$ emission in upland soils.

Densification of Mo Nanopowders by Ultra High Pressure Compaction (초고압 성형을 통한 Mo 나노 분말의 치밀화)

  • Ahn, Chi Hyeong;Choi, Won June;Park, Chun Woong;Lee, Seung Yeong;Kim, Young Do
    • Korean Journal of Materials Research
    • /
    • v.28 no.3
    • /
    • pp.166-173
    • /
    • 2018
  • Molybdenum (Mo) is one of the representative refractory metals for its high melting point, superior thermal conductivity, low density and low thermal expansion coefficient. However, due to its high melting point, it is necessary for Mo products to be fabricated at a high sintering temperature of over $1800-2000^{\circ}C$. Because this process is expensive and inefficient, studies to improve sintering property of Mo have been researched actively. In this study, we fabricated Mo nanopowders to lower the sintering temperature of Mo and tried to consolidate the Mo nanopowders through ultra high pressure compaction. We first fabricated Mo nanopowders by a mechano-chemical process to increase the specific surface area of the Mo powders. This process includes a high-energy ball milling step and a reduction step in a hydrogen atmosphere. We compacted the Mo nanopowders with ultra high pressure by magnetic pulsed compaction (MPC) before pressureless sintering. Through this process, we were able to improve the green density of the Mo compacts by more than 20 % and fabricate a high density Mo sintered body with more than a 95 % sintered density at relatively low temperature.

Numerical Study on Wind Resources and Forecast Around Coastal Area Applying Inhomogeneous Data to Variational Data Assimilation (비균질 자료의 변분자료동화를 적용한 남서해안 풍력자원평가 및 예측에 관한 수치연구)

  • Park, Soon-Young;Lee, Hwa-Woon;Kim, Dong-Hyeok;Lee, Soon-Hwan
    • Journal of Environmental Science International
    • /
    • v.19 no.8
    • /
    • pp.983-999
    • /
    • 2010
  • Wind power energy is one of the favorable and fast growing renewable energies. It is most important for exact analysis of wind to evaluate and forecast the wind power energy. The purpose of this study is to improve the performance of numerical atmospheric model by data assimilation over a complex coastal area. The benefit of the profiler is its high temporal resolution and dense observation data at the lower troposphere. Three wind profiler sites used in this study are inhomogeneously situated near south-western coastal area of Korean Peninsula. The method of the data assimilation for using the profiler to the model simulation is the three-dimensional variational data assimilation (3DVAR). The experiment of two cases, with/without assimilation, were conducted for how to effect on model results with wind profiler data. It was found that the assimilated case shows the more reasonable results than the other case compared with vertical observation and surface Automatic Weather Station(AWS) data. Although the effect of sonde data was better than profiler at a higher altitude, the profiler data improves the model performance at lower atmosphere. Comparison with the results of 4 June and 5 June suggests that the efficiency with hourly assimilated profiler data is strongly influenced by synoptic conditions. The reduction rate of Normalized Mean Error(NME), mean bias normalized by averaged wind speed of observation, on 4 June was 28% which was larger than 13% of 5 June. In order to examine the difference in wind power energy, the wind power density(WPD) was calculated and compared.

A Study on the Oxidation of Sintered $\beta-Sialon$from Coal Fly-Ash (석탄회로부터 제조된 $\beta-Sialon$의 고온산화반응)

  • Kil Dae-Sup;Kim Won-Baek;Lee Jae-Chun;Jang Hee-Dong
    • Resources Recycling
    • /
    • v.12 no.5
    • /
    • pp.29-35
    • /
    • 2003
  • $\beta$-Sialon is synthesized by carbo-thermal reduction and nitriding (CTRN) method, using the Fly ash from power plant. $\beta$-Siaion is synthesized at $1,450^{\circ}C$ for 10 hours, and sintered at $1,550 ^{\circ}C$ for 3 hours in nitrogen atmosphere. The XRD analytical results show that the sintered $\beta$-Sialon contains $SiO_2$ and $FeSi_{x}$ of inter-metallic compound. The sintered $\beta$-Sialon is stable against the oxidation at the temperature of 1,31$0^{\circ}C$ for 20 hours. The weight of the sample increases rapidly by oxidation reaction at $1,360^{\circ}C$. The oxide scale is consisted with mullite phase when it is oxidized at the temperature of $1,360 ^{\circ}C$ for 10 hours.

Development of the Ag/Cu Ingots for Mokumegane Jewelry (모꾸메가네 장신구를 위한 은/동 접합 잉곳 소재 개발)

  • Song, Oh-Sung;Kim, Jong-Ryul;Kim, Myung-Ro
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.1
    • /
    • pp.9-15
    • /
    • 2008
  • Mokumegane is one of the sophisticated metal craft techniques enabling wood grain surface effect. To embody the mokumegane, an ingot of well-bonded stacked metal plates has been required. Traditionally prepared mokumegane ingots were bonded using charcoal which enables reduction atmosphere, but sometimes end up with collapse of bonding interface due to the lack of reliable process control. We proposed a systematic vacuum direct bonding process for ingots. First, we confirmed copper//copper homogeneous plate bonding at $900^{\circ}C$ by applying uniaxial press of 2.5kg. We observed 80min required to obtain 90%-bonding ratio and the diffusion coefficient would be enhanced up to 100 times due to surface effect. Second, by considering enhanced diffusion behavior, we also obtained optimum bonding condition in copper/silver heterogeneous plates that ensures 90%-bonding ratio at $700^{\circ}C$ for 10min with apply uniaxial press. A 7-layered copper/silver ingot is prepared successfully, and eventually the prototype mokumegane cases for mobile phone were fabricated with these ingot.