• Title/Summary/Keyword: reducing toxicity

Search Result 205, Processing Time 0.025 seconds

A Study on the Application to Anti-corrosive Film of Acryl Emulsion for the Reducing of Environmental Pollutants (환경유해물질 저감을 위한 Acryl emulsion의 방청필름 응용 연구)

  • Lee, S.H.
    • Corrosion Science and Technology
    • /
    • v.8 no.5
    • /
    • pp.197-202
    • /
    • 2009
  • The high toxicity of wax, oil, varnish and volatile corrosion inhibitor(VCI) corrosion inhibitors lead to an increasing interest in using non-toxic alternatives such as anti-corrosive film. This study aims to investigate the possibility to use acryl based anti-corrosive film as a substitution of toxic corrosion inhibitors. Acryl emulsions were polymerized by several acryl monomers(acrylonitrile(AN), n-butyl acrylate(nBA), methylmethacrylate(MMA) and glycycyl methacrylate(GMA)), non-toxic corrosion inhibitor, crosslinking agents(diethylene glycol dimethacrylate(DEGDA)) and various additives in order to apply substrate of anti-corrosive film. Acryl emulsion for anti-corrosive film(AeACF) as a substrate of corrosion inhibitor film has excellent removal characteristic at above $25^{\circ}C$. The crosslinked by DEGDA in a range of above 4 wt% content anti-corrosive film can easily remove from the metal surface by using hands because it kept a balance of cohesion and adhesion strength. Anti - corrosive performance of AeACF is better than anti-corrosive oil by corrosion rate test, which was measured $54.3mg/dm^2$ day(MDD) and $142.9mg/dm^2$ day, respectively. Anti-corrosive film consisting of acryl monomers and inorganic anti-corrosive ingredients did not emit any toxic pollutants by gas chromatography. Thus it is estimated that acryl based anti-corrosion film can substitute toxic corrosion inhibitors.

Reducing Phosphorus Release from Paddy Soil by Coal Ash and Phospho-Gypsum Mixture

  • Lee, Chang-Hoon;Lee, Yong-Bok;Lee, Hyub;Ha, Byung-Yun;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.1
    • /
    • pp.12-16
    • /
    • 2005
  • As a silicate source to rice, a coal ash was selected and mixed with phosphor-gypsum (50:50, wt $wt^{-1}$) to reduce the potential of boron toxicity and to supply calcium element. We expected that high con tent of calcium in this mixture might convert water-soluble phosphorus to less soluble forms and then reduce the release of soil phosphorus to surface runoff. The mixture was applied with the rate of 0, 20, 40, and 60 Mg $ha^{-1}$ in paddy soil (Nagdong series, a somewhat excessively drained loamy fine sand) in Daegok, Jinju, Korea The mixture reduced significantly water-soluble phosphorus (W-P) in the surface soils by shifting from W-P and Fe-P to Ca-P and Al-P during whole rice cultivation. In contrast with W-P, plant available phosphorus increased significantly with the mixture application due to high content of phosphorus and silicate in the mixture. The mixture of coal ash and phosphor-gypsum (50:50, wt $wt^{-l}$) would be a good alternative to reduce a phosphorus export in rice paddy soil together with increasing rice yields.

Extracellular synthesis of silver nanoparticle by Pseudomonas hibiscicola - Mechanistic approach

  • Punjabi, Kapil;Mehta, Shraddha;Yedurkar, Snehal;Jain, Rajesh;Mukherjee, Sandeepan;Kale, Avinash;Deshpande, Sunita
    • Advances in nano research
    • /
    • v.6 no.1
    • /
    • pp.81-92
    • /
    • 2018
  • Biosynthesis of nanoparticles has acquired particular attention due to its economic feasibility, low toxicity and simplicity of the process. Extracellular synthesis of nanoparticles by bacteria and fungi has been stated to be brought about by enzymes and other reducing agents that may be secreted in the culture medium. The present study was carried out to determine the underlying mechanisms of extracellular silver nanoparticle synthesis by Pseudomonas hibiscicola isolated from the effluent of an electroplating industry in Mumbai. Synthesized nanoparticles were characterized by spectroscopy and electron microscopic techniques. Protein profiling studies were done using Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (1D-SDS PAGE) and subjected to identification by Mass Spectrometry. Characterization studies revealed synthesis of 50 nm nanoparticles of well-defined morphology. Total protein content and SDS PAGE analysis revealed a reduction of total protein content in test (nanoparticles solution) samples when compared to controls (broth supernatant). 45.45% of the proteins involved in the process of nanoparticle synthesis were identified to be oxidoreductases and are thought to be involved in either reduction of metal ions or capping of synthesized nanoparticles.

Environmental Chemical-Dioxin Impacts on Biological Systems: A Review

  • Vo, Thuy Thi Bich;Le, Binh Thi Nguyen;Nong, Hai Van;Yang, Hyun;Jeung, Eui-Bae
    • Journal of Embryo Transfer
    • /
    • v.28 no.2
    • /
    • pp.95-111
    • /
    • 2013
  • Worldwide there is concern about the continuing release of a broad range of environmental endocrine disrupting chemicals, including polychlorinated biphenyls, dioxins, phthalates, polybrominated diphenyl ethers (PBDEs), and other halogenated organochlorines persistent organic pollutants (POPs) into the environment. They are condemned for health adverse effects such as cancer, reproductive defects, neurobehavioral abnormalities, endocrine and immunological toxicity. These effects can be elicited via a number of mechanisms among others include disruption of endocrine system, oxidation stress and epigenetic. However, most of the mechanisms are not clear, thus several number of studies are ongoing trying to elucidate them in order to protect the public by reducing these adverse effects. In this review, we briefly limited review the process, the impacts, and the potential mechanisms of dioxin/dioxin like compound, particularly, their possible roles in adverse developmental and reproductive processes, diseases, and gene expression and associated molecular pathways in cells.

Ursolic Acid Reduces Mycobacterium tuberculosis-Induced Nitric Oxide Release in Human Alveolar A549 cells

  • Zerin, Tamanna;Lee, Minjung;Jang, Woong Sik;Nam, Kung-Woo;Song, Ho-yeon
    • Molecules and Cells
    • /
    • v.38 no.7
    • /
    • pp.610-615
    • /
    • 2015
  • Alveolar epithelial cells have been functionally implicated in Mycobacterium tuberculosis infection. This study investigated the role of ursolic acid (UA)-a triterpenoid carboxylic acid with potent antioxidant, anti-tumor, anti-inflammatory, and anti-tuberculosis properties in mycobacterial infection of alveolar epithelial A549 cells. We observed that M. tuberculosis successfully entered A549 cells. Cytotoxicity was mediated by nitric oxide (NO). A549 toxicity peaked along with NO generation 72 h after infection. The NO generated by mycobacterial infection in A549 cells was insufficient to kill mycobacteria, as made evident by the mycobacteria growth indicator tube time to detect (MGIT TTD) and viable cell count assays. Treatment of mycobacteria-infected cells with UA reduced the expression of inducible nitric oxide synthase, NO generation, and eventually improved cell viability. Moreover, UA was found to quench the translocation of the transcription factor, nuclear factor kappa B (NF-${\kappa}B$), from the cytosol to the nucleus in mycobacteria-infected cells. This study is the first to demonstrate the cytotoxic role of NO in the eradication of mycobacteria and the role of UA in reducing this cytotoxicity in A549 cells.

Inhibition of Oxidative Stress and Enhancement of Cellular Activity by Mushroom Lectins in Arsenic Induced Carcinogenesis

  • Rana, Tanmoy;Bera, Asit Kumar;Das, Subhashree;Bhattacharya, Debasis;Pan, Diganta;Das, Subrata Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.9
    • /
    • pp.4185-4197
    • /
    • 2016
  • Chronic arsenicosis is a major environmental health hazard throughout the world, including India. Animals and human beings are affected due to drinking of arsenic contaminated ground water, due to natural mineral deposits, arsenical pesticides or improperly disposed arsenical chemicals. Arsenic causes cancer with production of free radicals and reactive oxygen species (ROS) that are neutralized by an elaborate antioxidant defense system consisting of enzymes and numerous non-enzymatic antioxidants. Dietary antioxidant supplements are useful to counteract the carcinogenesis effects of arsenic. Oyster mushroom lectins can be regarded as ingredients of popular foods with biopharmaceutical properties. A variety of compounds have been isolated from mushrooms, which include polysaccharides and polysaccharopeptides with immune-enhancing effects. Lectins are beneficial in reducing arsenic toxicity due to anticarcinogenetic roles and may have therapeutic application in people suffering from chronic exposure to arsenic from natural sources, a global problem that is especially relevant to millions of people on the Indian subcontinent.

Development of Inhibitors of $\beta$-Amyloid Plaque Formation

  • Kim, Dong-Jin
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2006.04a
    • /
    • pp.123-135
    • /
    • 2006
  • Alzheimer's disease (AD) is the most common form of dementia in the aging population and is clinically characterized by a progressive loss of cognitive abilities. Pathologically, it is defined by the appearance of senile plaques - extracellular insoluble, congophilic protein aggregates composed of amyloid $\beta$ (A$\beta$) and neurofibrillary tangles (NFTs) - inyracellular lesions consisting of paired helical filaments from hyperphosphorylated cytoskeletal tau protein as described by Alois Alzheimer a century ago. These hallmarks still serve as the major criteria for a definite diagnosis of the disease. Consequently, one of the key strategy for drug development in this disease area focuses on reducing the concentration of cerebral A$\beta$ plaque by using substances that inhibit A$\beta$ fibril formation. We focused on developing inhibitors by synthesizing several kinds of aromatic molecules. The synthetic compounds were initially screened to evaluate the effective compound by tioflavin T fluorescence assay. The selected effective compounds were tested cytotoxicity and protective effect from A$\beta$-induced neuronal toxicity by cell based MTT assay with HT22 hippocampal neurons. The BBB permeability on effectors was also tested in in vitro co-culture model(HUVEC/C6 cell line). The behavior test wea carried out in mutant APP/PS1 transgenic mouse model of Alzheimer's disease. And inhibition of A$\beta$ fibril formation by the effective compound was monitored with transmitted electron microscopic images.

  • PDF

Experimental Studies on the Cadium and Metallothioneien in Molluscs Collected from Mangyeong River, Korea (만경강 유역 연체동물 내 Cadmium 및 Cadmium-Methallothionein 함량의 실험적 조사)

  • 소진탁;유일수;김숙향;김재진
    • The Korean Journal of Malacology
    • /
    • v.9 no.2
    • /
    • pp.16-22
    • /
    • 1993
  • Contamination of heavy metals in water and sediments along Mangyeong Gang(river) has reached up to critical level The object of the study is to elucidate somed molluscs which inhabit along the river on respect to the modulatory role in reducing the pollution. For the purpose, molluscs which are common in numbers and biomass in the area were collected, and Cadmim(Cd) was subjected as a reference metal in the experiment. The corresponding species were; Cipango;aludina chinensis (muddy snail) and Scapharca subcrenata (seashell). As methods, sample species were kept in laboratory under the natural condition as possible. Soil were brought from the site of the collection, dried autoclaved and wetted with ordinary water. It wad utilized as media to maintain the collected species in vitro all the way of the experiment. CdCI$^{2}$ was mixe in the medium according to experimental design. On the result obtained in the study, it is summarized that molluscs which inhabit along Mangyeong Gang(river)consume heavy mital-containing matters, so far Cd is concerned in the study. The amout of Cd concentration in tissues of the benthic natured invertebrates were dose and time related, and MT-Cd was also similar trend. Thus, Cd may eventually combine with low molecular protein forming metalloprotein, then reduce the toxicity of the heavy metal.

  • PDF

Effect of Fed Chlorella on the Change of Lipid Components and Enzyme Activity in Serum of Rat by Lead Exposure (납에 노출된 흰쥐에서 Chlorella 섭취가 혈청내 지방성분 및 효소활성에 미치는 영향)

  • 김성조;백승화;이주돈;김운성;문광현
    • The Korean Journal of Food And Nutrition
    • /
    • v.14 no.2
    • /
    • pp.138-144
    • /
    • 2001
  • This study was performed to investigate the influence of Chlorella which effected the change of Pb contents, enzyme activity and lipid compounds on the rats fed the beverage involved Pb and the different contented Chlorella added-diets for 18weeks. The rat's weight of 200ppm Pb group was decreased 6.04% and the cause of that was Pb intake. But the rat's weight of Chlorella added-diets +200ppm Pb group was increased 4.02% (p<0.01). When feeding the different(0%, 2%, 5%, 10% ) Chlorella added-diets with the Pb contented beverage to the rats, we could know that the Pb contents accumulated on tissue were decreased to 20.70(0%), 12.88(2%), 14.83 (5%) and 19.56(10%), compared with the quantity of Pb taken in. Total-cholesterol, triglyceride, glucose content and AST, ALT, ALP, LDH enzyme activity in serum were the highest on 200ppm Pb group and those were decreased by the order of different(2%∼5% >10%) Chlorella contents + 200ppmPb group. A significance was recognized on the level of 1%. Therefore, when rats were exposed to Pb, it was thought that the amount of Chlorella intake was adequate on content 2∼5% for reducing the lead toxicity.

  • PDF

Effects of Natural Organic Matter (NOM) on Cr(Ⅵ) reduction by Fe(II) (Fe(II)을 이용한 Cr(Ⅵ) 환원시 천연유기물의 영향)

  • 한인섭
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1999.10a
    • /
    • pp.81-84
    • /
    • 1999
  • The aqueous geochemical characteristics of Cr(III) and Cr(Ⅵ) in environmental systems are very different from one another: Cr(Ⅵ) is highly soluble, mobile and toxic relative to Cr(III) Reduction of Cr(Ⅵ) to Cr(III) are beneficial in aquatic systems because of the transformation of a highly mobile and toxic species to one having a low solubility in water, thus simultaneously decreasing chromium mobility and toxicity. Fe(II) species are excellent reductants for transforming Cr(Ⅵ) to Cr(III), and in addition, keeping Cr(III) concentrations below the drinking water standard of 52 ppb at pH values between 5 and 11. Investigations of the effects of NOM on Cr(Ⅵ) reduction are for examining the feasibility of using ferrous iron to reduce hexavalent chromium in subsurface environments. Experiments in the presence of soils, however, showed that the solid phase consumes some of the reducing capacity of Fe(II) and makes the overall reduction kinetics slower. The soil components bring about consumption of the ferrous iron reductant. Particular attention is devoted to the complexation of Fe(II) by NOM and the subsequent effect on Cr(Ⅵ) reduction. Cr(Ⅵ) reduction rate by Fe(II) was affected by the presence of NOM (humic acid), The effects of humic acid was different from the solution pH values and the concentration of humic acid. It was probably due to the reactions between humic acid and Cr(Ⅵ), humic acid and Fe(II), and between Cr(Ⅵ) and Fe(II), at each pH.

  • PDF