• Title/Summary/Keyword: reduced-salt pork sausage

Search Result 4, Processing Time 0.015 seconds

Effects of different frozen temperatures of pork sausage batter on quality characteristics of reduced-salt sausages using pre-rigor muscle

  • Kim, Geon Ho;Chin, Koo Bok
    • Animal Bioscience
    • /
    • v.35 no.8
    • /
    • pp.1270-1278
    • /
    • 2022
  • Objective: The objective of this study was to evaluate quality characteristics of reduced-salt pork sausage (PS) using pre-rigor muscle compared to those of regular-salt PS. In addition, effects of freezing on sausage batter with different temperatures (-30℃ vs -70℃) on quality characteristics of both sausage batter and cooked sausages during frozen storage were observed. Methods: Pre-rigor and post-rigor pork hams were used to manufacture low-fat sausages. Sausages using post-rigor (Post) muscle were manufactured at a salt level of 1.5%, whereas those with pre-rigor (Pre) muscle were processed at salt level of 1.0%. After these muscles were made at two salt levels (1.5% salt, Post-rigor; 1.0% salt, Pre-rigor), Sausage batters were stored at two frozen temperatures (-30℃ vs -70℃). During storage for 12 wks, they were measured for physicochemical and textural properties every 4 wks up to 12 wks. Results: pH values and temperatures of sausage batter of pre-rigor muscle were higher than those of post-rigor muscle regardless of the frozen temperature. The lightness and yellowness values of batter at the initial storage were the highest during storage. For PS, there were no differences in most parameters measured among all treatments. However, expressible moisture values (%) of Pre-30 and Pre-70 were lower than those of Post-30 (p<0.05). Conclusion: Regardless of frozen temperature during storage, quality characteristics of pre-rigor PS with salt level of 1.0% salt were similar to those of post-rigor PS with salt level of 1.5%. By using the pre-rigor muscle, salt content could be reduced by one third of the regular-salt level (1.5%) of post-rigor muscle.

Evaluation of salt level and rigor status on the physicochemical and textural properties of low-fat pork sausages added with sea tangle extract using rapidly chilled pre-rigor pork ham

  • Geon Ho Kim;Koo Bok Chin
    • Animal Bioscience
    • /
    • v.36 no.9
    • /
    • pp.1445-1452
    • /
    • 2023
  • Objective: This study was performed to evaluate the quality characteristics of pork sausage (PS) with sea tangle extract (STE) and rapid chilled pre-rigor muscle (RCPM) for the development of reduced-salt low-fat sausage. Methods: Pre- and post-rigor pork ham muscles were prepared to process PSs. Positive control (reference, REF) using post-rigor muscle were manufactured at a regular-salt level of 1.5%. Fresh and rapid-chilled pre-rigor muscle (FPM and RCPM) were used to manufacture reduced-salt sausages with 0.8% salt. Reduced-salt PSs were prepared with four treatments: FT1 (FPM alone), FT2 (FPM with 5% STE), RT1 (RCPM alone), and RT2 (RCPM with 5% STE). The physicochemical and textural properties of the sausages with reduced-salt levels and RCPM combination were measured to determine if the characteristics of RCPM were similar to those with FPM. Results: The pH values of PS with FPM and RCPM were higher than those of REF with post-rigor muscle. Color values (L*, a*, b*) were not affected by different rigor-states and salt addition level. Textural properties of reduced-salt PSs were similar to those of REF due to the improved functionalities of pre-rigor muscle. RT2 had lower expressible moisture (%) than other treatments with post-rigor muscle and RCPM except for RT1. Conclusion: The addition of STE and RCPM to reduced-salt PS increased the water-holding capacity, which was lower than those of PS with STE using RCPM but similar to those of regular-salt sausage.

Effect of sea tangle extract on the quality characteristics of reduced-salt, low-fat sausages using pre-rigor muscle during refrigerated storage

  • Geon Ho Kim;Koo Bok Chin
    • Animal Bioscience
    • /
    • v.36 no.11
    • /
    • pp.1738-1746
    • /
    • 2023
  • Objective: The aim of this study was to investigate quality characteristics of reduced-salt, low-fat pork sausage (PS) using pre-rigor muscle and sea tangle extract (STE) to reduce salt level of sausages during refrigerated storage. Methods: Pork ham was prepared with pre-rigor and post-rigor muscle from the local market. Sausages using post-rigor muscle were manufactured with the 1.5% of salt content, and samples with pre-rigor muscle were processed by different salt concentrations (0.8%). Accordingly, PSs were prepared in 4 treatments (REF, PS with 1.5% of salt using post-rigor muscle; CTL, PS with 0.8% of salt using pre-rigor muscle; TRT1, PS with 0.8% of salt and 5% of STE using pre-rigor muscle; TRT2, PS with 0.8% of salt and 10% of STE using pre-rigor muscle). For the evaluation of quality characteristics and shelf-life of reduced-salt PS, pH and color values, cooking loss (%), expressible moisture (%), textural properties, lipid oxidation (thiobarbituric reactive substances), protein denaturation (volatile basic nitrogen), and microbiological analysis (total plate counts and Enterobacteriaceae counts) were determined. Results: The pH and temperature of pre-rigor raw pork ham were higher than those of post-rigor pork ham. Hardness of TRT2 was higher than that of REF or CTL. TRT2 had higher gumminess and chewiness than CTL. TRT1 and TRT2 had lower volatile basic nitrogen than CTL. Total plate counts of TRT2 were lower than those of CTL. Expressible moisture values of TRT1 and TRT2 were similar to those of REF. The addition of STE into PS improved functional properties and shelf-life of PS. Conclusion: Reduced-salt PS containing pre-rigor muscle and STE had similar functional properties to those of regular-salt ones, while containing approximately 47% less salt compared to regular-salt level.

Effect of Faba Bean Isolate and Microbial Transglutaminase on Rheological Properties of Pork Myofibrillar Protein Gel and Physicochemical and Textural Properties of Reduced-Salt, Low-Fat Pork Model Sausages

  • Geon Ho Kim;Koo Bok Chin
    • Food Science of Animal Resources
    • /
    • v.44 no.3
    • /
    • pp.586-606
    • /
    • 2024
  • The study was performed to determine the effect of faba bean protein isolate (FBPI) alone or in combination with microbial transglutaminase (MTG) on the rheological properties of pork myofibrillar protein gel (MPG), and physiochemical and textural properties of reduced-salt, low-fat pork model sausages (LFMSs). The cooking yields of MPGs with MTG or FBPI alone decreased and increased, respectively. However, the combination of FBPI and MTG was similar to the control (CTL) without FBPI or MTG. Gel strength values of MPG added with both FBPI and MTG were higher than treatments with FBPI or MTG alone. The hydrophobicity values of CTL were lower than those of MPG with FBPI alone, whereas the addition of MTG decreased the hydrophobicity of MPGs. The incorporation of FBPI alone or in combination with MTG decreased sulfhydryl groups (p<0.05). Shear stress values of MPGs with MTG tended to be higher than those of non-MTG treatments at all shear rates, and the addition of FBPI into MPGs increased shear stress values. Reduced-salt (1.0%) LFMSs with FBPI alone or combined with MTG had both lower cooking loss and expressible moisture values than those of CTL and similar values to the reference sample (REF, 1.5% salt). Textural properties of reduced-salt LFMSs with FBPI or MTG were similar to those of REF. These results demonstrated that the combination of FBPI and MTG could improve the water binding capacity and textural properties of pork MPGs and LFMSs and might be suitable for application in the development of healthier meat products.